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1.0. INTRODUCTION

This report covers the work performed in Phase I of the contract
No. DAAE07-82-C-4063 with Battelle as the prime contractor and
Eaton Corporation as the subcontractor. This project was
initiated under the Manufacturing Methods and Technology Program.
The purpose of the project is to develop a general purpose
Computer-Aided Design/Manufacturing (CAD/CAM) technique for
producing cold forged spur and helical gears.

In recent years, there has been considerable efforts directed at
reducing the material and production costs associated with the
manufacturing of precision parts. Metaiforming processes, namely
cold extrusion, precision forging, warm forging and some powder
metal (P/M) forming methods are being widely used in many high
technology industries to manufacture various parts whose
functional surfaces can be finish-formed without requiring further
machining.

In general, gear manufacturing processes are highly specialized
due to the complex geometry and high accuracy requirements of the
gear teeth. Precision forming methods for gears have been
successfully used for a few types of spur gears. These forming
methods offer considerable advantages such as a reduction in
machining (material and energy losses) and an increase in fatigue
life. To establish precision forming as an economical production
technique requires the capability to design and manufacture dies
with precise and reproducible dimensions with long life and
acceptable cost.

The traditional method of die design and manufacture employs
information developed by extensive experience and trial and error.
Each new gear design requires a new and costly die development
program which makes the precision forming process economically
less attractive. Therefore, in this project, methods were
developed to apply existing advances in CAD/CAM technology (finite
element, metal forming and heat transfer analysis) to gear forming
die design and manufacture. This approach benefits from the
capability of the computer in computation time and information
storage, reduces trial and error, and represents a general method
applicable to the family of spur and helical gears.

2.0. OBJECTIVES

The overall objective of this program is to develop a general
purpose CAD/CAM technique for producing precision-forging and

17




extrusion dies for the family of spur and helical gears. Using
dies made by this process, gears can be precision formed from
wrought billets or powder metal (P/M) preforms. The specific
objectives of this program are to:

e optimize the design and the manufacturing of dies used in
precision-gear forming by CAD/CAM techniques,

e reduce the cost of die and process development for
precision forming of spur and helical gears of different
sizes and modules by CAD/CAM techniques,

o make the CAD/CAM system flexible, making it (1) useful for
the family of spur and helical gears and (2) easily
introduced into production by forge shops.

This report covers the details of Phase I only. In developing the
present CAD/CAM system for Phase I the system was made user
oriented. The user does not need to know computer programming.
However, some training is probably necessary to operate the system
effectively. The user should be an engineer with gear/forging/
extrusion experience so that engineering judgements can be made
during the operation of the CAD system. The present CAD system
will be upgraded and corrected after the discrepancies between the
predicted and measured values have been determined in Phase II.

3.0. CONCLUSIONS

The developed CAD/CAM system, named GEARDI, produces reliable
results when applied to the analysis of the forging and extrusion
of spur and helical gears. tach of the specific objectives of this
program have been met as follows:

e the computer program GEARDI allows the user to
interactively design optimum spur and helical gear forming
dies. This has been achieved by programming the necessary
gear profile geometry and metal forming equations in a
variable format to allow the user to design dies for
specific applications.

e Modeling studies with lead as the model material, using a
spur gear forging die, have been performed and have given a
better understanding of the metal flow in the forming
process. The loads predicted by the program GEARDI have
been compared with those measured in model experiments,
using lead as forging material. This comparison showed that
the computer predictions were in good agreement with
measured load values. Thus, model studies established the
credibility of the computer program. This allows the GEARDI
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program user to conduct prototype forming analyses within
the computer and reduce the cost of die and process
deve lopment.

e Current gear manufacturing terminology is used in the
GEARDI program which makes it easy to use. The method of
defining the gear geometry in the program is based on the
conventional gear manufacturing methods of hobbing and
shaper cutting, thus making it easy to “introduce into
production.

The program has powerful application possibilities, not only in
the area of metal forming but also, with its ability to design
hobs and shaper cutters and to modify the fillet to a non-
trochoidal shape, in the area of gear and gear train design.
4.0. RECOMMENDATIONS

4.1, Technology Transfer

The results of the project should be provided to all interested
U.S. companies. Thus, the probability of implementing the project
results for producing forged or extruded spur and helical gears
will be enhanced.

The prime contractor, Battelle, worked closely with the
subcontractor, Eaton Corporation, who is already forging spur
gears on a production basis. Some of the project results will be
used by Eaton for precision forging or extrusion of spur and/or
helical gears. In addition, several other companies have indicated
interest in the results of this project. An effort should be made
to contact as many gear manufacturing companies as possible in
order to generate interest in the results of the project. At the
completion of the Phase II effort, the possibility of starting a
user's group for the GEARDI program should be considered. As the
sponsor of the user's group, Battelle could provide technical
support for the program and also make revisions and additions to
the program as suggested by member companies.

4.2. Phase II Effort

During the upcoming Phase II effort, representative spur and
helical gears will be formed using dies designed by the GEARDI
program. During this phase, the true capabilities of the program
should be evaluated. A comprehensive test procedure should be
begun to completely analyze the gears produced by the computer-
aided designed dies. This will enable a quantitative comparison
between the formed gears and machined gears.
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5.0. DISCUSSION

5.1. Background

Precision forging of spur gears has been documented on many
occasions. Several studies have investigated the effects of
temperature and tool loads on the gear tooth geometry (1,2)*.
Corrections to the forging die in these instances amounted to
either an increase or decrease in the root diameter, outside
diameter or the module. There has been no effort to determine the
geometry of a conventional hob and shaper cutter which will cut
the corrected geometry.

5.1.1. Samanta Process. The extrusion of spur gears has been
outlined by Samanta (3). The main application of this process has
been the production of automobile starter pinions. As such, the
gear has not been made to the close tolerances and high finish
characteristic of transmission and axle gears of a similar size.
However, the process does greatly reduce the manufacturing time
compared to the operations it replaces.

5.1.2. Hydrostatic extrusion. Helical gears have been produced
by hydrostatic extrusion (4). This approach requires the extrusion
of long billets to achieve necessary production rates and, as
such, poses several economical problems which must be solved in
order to make this forming method successful. The results of this
program have not been utilized for manufacturing gears on a
production basis.

5.1.3. Hot Forging. Eaton Corporation, the subcontractor in the
present program, has developed a process for hot forging spur
gears to near net tolerances. The gears produced by this metnod
must be finish machined after forging but significant material
savings have been achieved.

5.2. Program Highlights

5.2.1. Application of CAD/CAM to Forging. In recent years,
CAD/CAM techniques have been applied to die design and manufacture
for forging rib-web aircraft structural parts (5), track shoes for
military vehicles (6), and precision turbine and compressor blades
(7). The experience gained in all of these applications indicates
that a certain methodology is necessary for CAD/CAM of dies for
precision and/or near net shape forming. This approach is also
applicable, with appropriate modifications, to precision forming

*Numbers in parentheses refer to references at the end of the
report.
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of spur and helical gears. As illustrated in Figure 5-1, the
inputs to the CAD/CAM method are; :

o the geometry of the part to be formed,

e data on billet material under forming conditions, billet
and die temperatures, and rate and amount of deformation,

° ffiction coefficient to quantify the friction shear stress
at the material and die interface,

e forming conditions, (temperatures, deformation rates,
suggested number of forming operations).

With these input data, a preliminary design of the finish forming
die can be made and flash dimensions can be estimated. Next,
stresses necessary to finish form the part and temperatures in the
forming dies are calculated. The temperature calculations take
into account the heat generated due to deformation, friction and
the heat transfer during the contact between the hot, formed part
and cooler dies. The elastic die deflections due to temperatures
and stresses can be estimated and used to predict the small 4
corrections necessary on the finish die geometry. The knowledge of
the forming stresses also allow the prediction of forming load and
energy. The estimation of die geometry corrections is necessary
for obtaining close tolerance-formed parts and for machining the
finish dies to exact dimensions. The corrected finish die geometry
is used to estimate the necessary volume distribution in the
preform or blocker stage.

The ultimate design of the preform or blocker die requires a metal
flow simulation - a computerized definition of metal distribution
at each instant during forging. This simulation is mathematically
complex and can only be performed for relatively simple forgings
like blade airfoils or cylindrical forgings. In more complex
applications, preform or (blocker) design can be determined by a
computerized use of experience-based formulas. After the preform
(blocker) design is completed, the dies or electrodes for this
forging operation are manufactured by numerical control, as it is
the preferred case for finish forging dies.

This overall procedure, described above and illustrated in Figure
5-1, was applied to CAD/CAM spur and helical gear forming with the
following modifications;

e NC machining of the gear forging dies (finish and preform)
is not economical because it requires (1) a 5-axis NC
machine and (2) considerable machining time to generate the
complex surface of each individual gear tooth.
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FIGURE 5-1. Major Steps Common to CAD/CAM Methods Used for
Forging Die Design and Manufacture
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o The preform dies for gear forging can be designed as
indicated in Figure 5-2. However, the experience gained by
companies' precision forging spur gears indicates that the
manufacture of a preforming die is not necessary as all of
the required material movement can be done in one finish
forging die.

5.3. Program Approach

In Phase I, the CAD of forging and extrusion dies has been carried
-out. All of the Phase I work was conducted at Battelle with some
input from Eaton Corporation. A simplified flow diagram for the
computer-aided design and manufacturing of forging and extrusion
dies for spur and helical gears is shown in Figure 5-2. This
outline is very similar to that used in other CAD/CAM forming
programs, as seen in Figure 1. Descriptive computer-aided design
procedures for the dies are given in Figure 5-3.

Following the outline of Figures 5-2 and 5-3, Phase I of the
present project was divided into:

e Task 1. - Transformation of Dimensional Data into Computer-
Compatible Digital Data

o Task 2. - Computer Aided Design (CAD) of Forming Dies
e Task 3. - Development of an Interactive CAD System

5.3.1. Task 1. The objective of this task was to describe spur
‘and helical gear geometry in digital form for use in the computer.
The gear tooth geometry was generated by simulating in the
computer the motions of both hob and shaper cutter cutting
machines. These two machines were selected since the majority of
gears produced by conventional cutting methods are either hobbed
or cut using a shaper cutter (8). For defining the tooth geometry,
standard equations were used to simulate the gear cutting process
(9-13). The derivations of these equations are given in Appendix
A. These equations are included in the computer program GEARDI,
which was developed under Task 3.

To define the tooth geometry, certain gear and/or tool parameters
had to be specified. Some additional data pertaining to the mating
gear was also required in certain instances. All the data required
for the computations was obtained from the so-called "summary
sheet" developed by gear designers (Figure 5-4) and also the
geometry of the cutting tool (Figure 5-5). With these data, the
equations given in Appendix A were used to calculate the x and y
coordinates of the points describing the gear tooth profile.

5.3.2. Task 2. The geometry of the forming die is different from

23




Process Variables

Gear Geometry

Calculate Stresses
During Forming
{Slab Method)

Calculate Temperatures
During Forming

\

Calculate Local Elastic

Die Deflections During Forming

(Finite Element)

Calculate
Bulk Shrinkage |

Yy

Define Corrected
Gear Tooth Geometry

A

A

A

Estimate
Preform
Volume

Define Finish Die
Geometry With
Corrected Tooth Form

Estimate Forming
Load, Local Stresses,
and Forming Energy

FIGURE 5-2. Design Process for Gear Forming

Machine
Electrodes

l

24

Dies




MACHINE ELECTRODES
FOR EDM OF DIES

GEAR
SPECIFICATION

DESCRIBE GEAR GEOMETRY IN I INSPECT ELECTRODESI
DIGITAL FORM FOR USE IN COMPUTER

NO
DISPLAY GEAR GEOMETRY l I CORRECTIONS ARE DIRENSIONS CORRECTIONS
YES
NEED YES
MODIFICATIONS? EDM THE DIES

|XNSPECT DIE DIMENSIDNSI

DESIGN
FORMING DIES

[INTERACTIVE DISPLAY] l MODIFICATIONSI

NO ASSEMBLE THE DIES
AND FORM GEARS

!

INSPECT THE GEARS AND
EVALUATE FORMING PROCEDURE

i

UPDATE COMPUTER PROGRAMS
. AND REFINE CAD/CAM
METHODS FOR DIES

NO

ARE DIMENSIONS
CORRECT?

RESULTS
ACCEPTABLE?
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051
DATA

061
DATA

071
DATA

FIGURE 5-4.

DRAWING INFORMATION FOR:
A DRIVEN COUNTER SHAFT

IDENTIFICATION NUMBER .

SET NUMBER .

NUMBER OF TEETH. . . .

NORMAL DIAMETRAL PITCH (MODULE)
NORMAL PRESSURE ANGLE

HELIX ANGLE

HAND OF HELIX .

LEAD . . . .

TRANSVERSE DIAMETRAL PITCH (MODULE)
TRANSVERSE PRESSURE ANGLE

MAXIMUM OUTER DIAMETER .
MINIMUM OUTER DIAMETER .
MAXIMUM TiP CHAMFER DIAMETER
MINIMUM TIP CHAMFER DIAMETER
THEORETICAL PITCH DIAMETER
MINIMUM ROOT DIAMETER

BALL/PIN DIAMETER FOR (MOP) .
MAX. MEAS. OVER PINS (MOP) .
MIN. MEAS. OVER PINS (MOP)} .
MIN. CALIPER MEAS., (4) TEETH
MAX. CALIPER MEAS. (4) TEETH .

MEAN FACE WIDTH

MIN. NORM TOPLAND (MAX, 0 D. W/O CHAM) .
MIN. THEQ. NORM. CIRC. TOOTH THICKNESS .

TOOTH THICKNESS @ HALF OF WHOLE DEPTH
CASE DEPTH . . .
MAX. PITCH DIAMETER RUNOUT (TIR)

@ MAX. OUTER RADIUS .

@ MAX. END OF ACTIVE PROFILE
@ MAX. HIGH CONTACT POINT
@OPER.PITCHPOINT . . . .

@ MIN. LOW CONTACT POINT . .
@ MIN. START OF ACTIVE PROFILE
@ START OF INVOLUTE CHECK

@ BASE RADIUS .

MAX. LEAD VARIATION .
MAX. LEAD RANGE. P
CROWNING IN MIDDLE 80% OF TOOTH

MAX. RUNOUT (T.ILR.) . . .
MAX. TOOTH TO TOOTH COMPOSITE VAH. .
MAX. TOTAL COMPOSITE VARIATION .
MAX. PITCH VARIATION .

MAX. PITCH RANGE.
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ENGLISH METRIC
(INCH) (MM)
81.0220 81.0220 .
8100123 810.0123
32. 32.
10.0000 2.540
19.0000 19.000
31.5739 31.574
LEFT
19.2000 487.680
8.5197 2.981
22.0064 22.006
4.079 103.60
4.069 103.35
4.049 102.84
4.039 102.59
3.7560 95.402
3511 89.18
0.2160 5.486
4.1716 105.958
4.1681 105.870
1.1056 28.082
1.1071 28.121
0.875 22.23
0.029 0.74
0.1626 4.130
0.1764 4.481
.023/033  0.59/0.83 .
0.0025 0.063
ROLL ANG. RADIUS RADIUS
34.95 2.0395 51.803
33.99 2.0245 51422
30.30 1.9697 50.030
25.02 1.9000 48.260
22.42 1.8697 47.49
1745 1.8202 46.233
16.72 1.8138 46.070
0.00 1.7412 44.226
0.0004 0.010
0.0008 0.020
.00000/.00050 .000/.012
0.0025 0.063
0.0008 0.020
0.0032 0.081
0.0004 0.010
0.0029 0.073

Typical Summary Sheet for Gear Design
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FIGURE 5-5. Basic Geometry of a Hob and a Shaper Cutter (11,16)
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that of the formed gear because:

e A shrink fit is normally used to hold the die in the die
holder causing a contraction of the die surfaces.

e The dies may be heated prior to forming and then further by
the hot billet during forming. This makes the die insert
expand.

e During forming, the die surface deforms elastically due to
forming stresses.

e Prior to forming, the billet may be heated and formed at a
high temperature. Due to unequal coefficients of thermal
expansion of the die and billet materials, the die and the
billet expand or shrink in unequal amounts.

o After forming, the gear shrinks during cooling from form1ng
temperature to room temperature.

To get accuracy in the formed gears, each of the geometrical
variations listed above were estimated and the die geometry
corrected accordingly. For this purpose, the present task was
conducted in various subtasks, as discussed below.

5.3.2.1. Calculation of the stress distribution and forging load.
To determine the elastic deflection of the forming dies, stresses
acting on the die during the forming processes had to be known.
This stress analysis was necessary to obtain not only the elastic
deflection, but also to calculate the forming pressure and load.
The stresses in the gear tooth cavity during forming were
calculated for extrusion using the slab method. For forging, an
analysis for estimating the load in a flashless forging process
‘was used to determine the punch pressure and punch force. The
method takes into account the amount of die filling desired. Die
filling is a three-dimensional concept and relates to both the
amount of material movement into the corners of the gear tooth tip
and the amount of radial flow at any given axial position in the
gear.

As with the gear geometry, parametric information was required to
adequately define the forming process. Additionally, a Finite
Element Method (FEM) analysis, applicable to metalforming (14),
was done to determine the required tool pressures to achieve
adequate die filling in the tip corners of the gear teeth for the
forging process. The details of these two methods of calculation
are given in Appendices B and C respectively. A modeling study was
also conducted to simulate the gear tooth filling process during
forging and is described fully in Appendix G. Figure 5-6 shows the
tooling used in the modeling study. The tooling consisted of a die
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cavity in the shape of a gear, a mating punch, and a flat bottom
die. For each specimen deformed, a load-stroke curve (Figure 5-7)
was recorded. Figure 5-8 shows a comparison of the results of the
empirical, FEM, and modeling analyses.

There is close agreement between the computed and measured values
of the punch pressure. As a part of the modeling study, a
production scale simulation was also conducted using production
type tooling. These experiments gave detailed information on the
way in which the gear tooth cavity is filled when the
configuration of the tooling is varied.

5.3.2.2. Estimation of elastic die deflections due to mechanical
loading. The deformations resulting from the forging load are
generally elastic if a proper die material with appropriate
mechanical properties is selected. Using the forging pressure
obtained from the flashless forging equations, as described in
Appendix B, the elastic deflection of the die due to loading was
computed using a finite element code at Battelle called NSYMFT. A
preliminary simple calculation showed that the order of magnitude
of this correction was quite small. This point was also
highlighted in a recent publication on a spiral bevel gear forging
project (15). The elastic deformation due to mechanical loading
was calculated using NSYMFT and agreed closely with the results of
the simple calculation.

It was decided that the corrections due to the elastic deformation
of the die under mechanical loading could be adequately computed
using a simple calculation and a FEM analysis did not need to be
carried out for each new die design.

5.3.2.3. Estimation of the bulk shrinkage due to temperatures and
shrink fit assembly. The first major component of bulk shrinkage
is due to temperatures. The temperature of the die increases
during the forming due to heat transfer from the heated billet.
The following are the outcome of the thermal interaction between
the die and the billet;

e The dimensions of the billet increase as it is heated from
room temperature to the forming temperature. The dimensions
of the billet change further during the forming operation
during (a) temperature increases because of heat generation
due to plastic deformation and (b) temperature drop because
of heat loss from the billet to the dies. The change in
temperature of the billet is not constant over the entire
cross section, but varies depending on the local
deformations and heat transfer.

o After forming, the formed gear is cooled in a sand-graphite
medium to room temperature. During this period, the
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magnitude of the gear dimensions decreases.

Based on the results of a similar heat transfer problem in a
related spiral bevel gear forging program, it was determined that
a simple heat transfer analysis based on average temperatures
would be fully adequate for estimating the die corrections in the
present project. The die and the gear tooth cavities must be
larger than the nominal room temperature size of the formed gear
and gear tooth. o ‘

The second aspect of bulk shrinkage is the change of inner die
dimensions due to shrink-fitting of the die assembly. These were
compensated for to achieve the desired dimensions on the finished
gear or pinion. A simple solution based on thick circular
cylinders under internal pressure was used to compute the changes
on the inner diameter of the die assembly. The details of this
computation are given in Appendix B.

5.3.2.4. Modification of the gear tooth geometry. In this task
the results of the die correction analyses were used to alter the
coordinates of the gear tooth profile to achieve the die geometry.
Helical gear dies must be made by using a solid electrode but spur
gears die can be cut using either a solid electrode or a wide EDM
process. In either case, a corrected set of gear tooth profile
coordinates is needed. This new set of coordinates was computed by
applying a correction factor to the radius vector from the center
of the gear to each point on the gear tooth profile. The
correction in the radial direction is given by;

pro=C.*r (4)
where;

Cp = Cy + Cp + Sgps

Cy = average correction for temperature shrinkage,

Cp = average correction for elastic deflection,

Csp = average correction for shrink fitting.

In addition to using the above correction factors to determine the
new set of gear tooth profile coordinates, a correction was made
to compensate for the amount of "overburn" which will occur during
the EDM process. Overburn refers to the fact that there is a zone
around the edge of the electrode or wire which is burned away from
the EDM workpiece due to the size of the electric arc. Thus, for
the die electrode, the coordinates were moved radially inward to
accomodate the overburn.
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When forming helical gears, the three-dimensional nature of the
die requires that the die be cut using a helical electrode. This
electrode will have a tooth geometry different from the formed
gear as previously mentioned. To cut this electrode on a
conventional hob or shaper cutter machine requires the generation
of new hob or shaper cutter dimensions, different from the
dimensions used to cut the gear.

5.3.3. Development of the Interactive Computer Aided Design
System. This final task involved the creation of a graphics
oriented CAD program named GEARDI which enables the user to design
spur and helical gears, predict tooling loads, pressures, and
deformations for forming the gears, and define the information
required to manufacture tooling using the method of Electrical
Discharge Machining (EDM). A1l of the mathematical analyses, given
in Appendices A (Generation of Gear Tooth Geometry for Spur and
Helical Gears), B (Stress Analysis, Elastic Deflection and Bulk
Shrinkage), C (Spur Gear Forging Load Estimation Using the Finite
Element Method), and G (Analysis of Metal Flow Using Lead as a
Mode1 Material) were included in the program. A1l of the
subroutines of GEARDI were written in standard VAX FORTRAN.

To facilitate the understanding of the programming steps, the
listing of the program includes a generous number of "COMMENT"
statements. The structure of the overall GEARDI system is shown in
Figure 5-9. Appendix D (Results of the Project as Applied to
Sample Gears) gives a detailed description of how the computer
program can be used to solve typical design problems. A user's
manual is included in Appendix £ and a list of all subroutines
used in the program is contained in Appendix F.
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1.0. INTRODUCTION

There are several methods for manufacturing spur and helical gears
using some form of cutting tool. These include the form-cutting
processes of milling, broaching and shear cutting and the
generating methods of hobbing and shaper cutting. Cost,
flexibility, speed and accuracy are all factors affecting the
manufacturing process chosen for a particular application and are
the main reasons why hobbing and shaper cutting are the most
common gear manufacturing methods (Figures A-1 and A-2). Gear
teeth are used to provide a non-slip drive when power or motion is
to be transmitted from one shaft to another. When the additional
requirement that the motion of power shall be transmitted smoothly
is imposed, the size and shape of the teeth become critical. In
the case of spur and helical gears, the curves used are almost
exclusively those of the involute family (2)*.

This appendix deals with the shape and proportions of involute
spur and helical gear teeth and the calculation of the coordinates
which define the tooth profile. These calculations are based on
hob and shaper cutter generating methods. The basic geometry of
the gears is presented along with several useful modifications to
the standard tooth profiles.

2.0. MANUFACTURING METHODS

2.1. Hobbing

Hobbing is one of the most economical and versatile methods of
generating spur and helical gear teeth using a cutting tool. One
hob of a given pitch will cut the teeth of all involute spur and
helical gears of the same normal pitch and pressure angle
including all numbers of teeth and helix angles. The size of the
teeth and the size of the work are limited only by the capacity of
the hobbing machine on which the part is to be cut (Figure A-1)
(2). The generation of a gear tooth is a continuous indexing
process in which both the cutting tool and the workpiece rotate in
a constant relationship while the hob is being fed into the work.
As the hob is fed across the work once, all the teeth in the work
are completely formed.

The hob is basically a worm which has been fluted and has form-

*Numbers in parentheses refer to references at the end of the
appendix.




FIGURE A-1. Hobbing Machine (1)

FIGURE A-2. Shaper Cutter Machine (2)




relieved teeth. The flutes provide the cutting edges. Each tooth
is relieved radially to form clearance behind the cutting edge,

allowing the faces of the teeth to be sharpened while retaining

the original tooth profile (Figure A-3). Figures A-4, A-5, and A-6 .
are schematic diagrams showing the relationship between the hob
and the gear. :

2.2. Shaping

Like hobbing, gear shaping is a generating process. The tool used
is a "pinion"-type tool (Figure A-7) as opposed to the "worm"-like
tool used in hobbing. Cutting gears with shaper cutters is a
planing or shaping process involving a reciprocating motion of the
tool with chips removed only on one direction of the stroke. This
is the principal upon which the gear shaper operates, as indicated
in Figure A-8. The shape produced by the shaper cutter is shown in
Figure A-9. In the tooth space to the right of the illustration
are shown the successive positions taken by the cutter tooth as it
"rolls" into the tooth space.

2.3. Shaving

Rotary gear shaving is a production process for gear finishing
that uses a high-speed steel, hardened and ground, ultra-precision
shaving cutter. The cutter looks like a helical gear. It has
gashes in the flanks of the teeth that act as the cutting edges.
The cutter is meshed with the gear in a crossed-axes relationship
(Figure A-10), and rotated in both directions during the work
cycle while the center distance is being reduced in small
controlled steps. Simultaneously the work is traversed back and
forth across the width of the cutter. Excellent surface finish is
achieved with gear shaving. A value of 25-mu is the normal finish
achieved with production gear shaving. The shaving process
exhibits advantages in the ability to modify the tooth form. A
crowned or tapered tooth form and minute modifications in the
involute profile can be provided by shaving.

3.0. GEOMETRY OF SPUR GEAR TEETH

Figure A-11 shows the basic geometry of a spur gear tdoth with the
following definitions.

e addendum - the radial distance between the top land
and the pitch circle

e backlash - the amount by which the width of a tooth

space exceeds the thickness of the
engaging tooth on the pitch circles
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circular pitch the distance, measured on the pitch
circle, from a point on one tooth to a

corresponding point on an adjacent tooth

e clearance - the amount by which the dedendum of a
gear exceeds the addendum of its mating
gear

e dedendum - the radial distance from the bottom land

to the pitch circle

e diametral pitch

number of teeth on the gear per inch of
pitch diameter

pitch diameter diameter of the theoretical pitch circle
' which is tangent to the corresponding

pitch circle on a mating gear

There are two commonly used tooth profile modifications used to
improve the performance of spur and helical gears; tip relief and
tip chamfer. The methods of specifying these parameters are shown
in Figure A-12. There are many different situations in which spur
or helical gears may be designed based on hobbing and shaper
cutting. Most spur and helical gear tooth profiles can be designed
using one or more of the following: 1) hob generation, grounded
corner, 2) pseudo-hob generation, rounded corner (hob designed to
cut a given gear), 3) hob generation, tip protuberance (Figure
A-13), 4) shaper generation, sharp corner, 5) shaper generation,
full-rounded tip, and 6) mating gear plus operating conditions.

4.0. DETERMINATION OF GEAR GEOMETRY FOR SPUR GEARS

The following discussion describes the procedures used to compute
the spur gear tooth coordinates and the equations employed in
these procedures. These equations also apply to helical gears by
taking into account the helix angle or twist of the gear.

The spur gear tooth profile may be divided into four sections;
bottom land, fillet, involute, and top land. The rectangular
coordinates of the fillet-involute region are computed from the
polar coordinates using equations found in reference (2). The gear
tooth profile equations are summarized below.

4.1. Involute

The involute equations remain the same for all generation methods.
Referring to Figure A-14, for the involute, for each value of
¢ there is a unique value for r;
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6 = tan(¢) - ¢ = inv(e) , (A-1)
r = Ry/cos(s) , (A-2)
where;
6 = the involute angle measured from the point where
the gear tooth profile intersects the base circle,
¢ = the pressure angle at any radius, '
inv(¢) = the involute function of g,
r = any radius to a point on the tooth profile,
Rp = the base radius of the gear

Note that the angle ¢ is measured from the radial line passing
through the beginning of the involute curve on the base circle.
The profile coordinates are computed using a rectangular
coordinate system with the x-axis passing through the center of
the tooth space. The polar angle, 8" (Figure A-15), defining each
profile point is measured from this center line, where;

" = any angle from the tooth space center line to a
point on the gear tooth profile,

H = half-width of entire tooth, in radians,
T = any arc tooth thickness in the involute region,
in units of length.
Tp = the arc tooth thickness at the pitch radius,
Rp = pitch radius,
¢p = pressure angle at the pitch radius,
p = circular pitch,
Ng = number of teeth on gear.

In cases where there is a chamfer on the tooth tip (see Figure
A-16), the involute coordinates are computed until the radius
reaches the depth at which the chamfer is to start. Referring to
Figure A-16;

Tic = arc tooth thickness of gear at tip when tip,
chamfer exists,

arc tooth thickness at tip without tip chamfer
arc length of tip chamfer,

radial depth of tip chamfer.

Ty
te
B

Tip relief (Figure A-17) is another situation in which the
involute is altered. In this case a new base circle is computed to
be used in Equation (A-2). This new base circle is calculated to
give the desired tooth tip thickness as specified by;

T = T.t - t (A-3)

tr r?




FIGURE A-15. Determination of Tooth Profile from Basic Gear
Parameters (symbols explained in text) (4)
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FIGURE A-16. Tip Chamfer on a Spur Gear Tooth {symbols explained
in text) (5)
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where;

Tt = arc tooth thickness of gear at tip when tip
" relief exists,
Ty = arc tooth thickness at tip without t1p relief,
t. = arc length of tip relief, :
Ar,. = radial depth of tip relief.
4.2. Fillet

The shape of the gear tooth fillet is the only part of the tooth
profile which is process dependent. In each case, a curve known as
a trochoid is generated by the corner of the cutting tool at the
tip.

When using a hob with a rounded corner (Figure A-19), the fillet
shape (Figure A-18) is generated from the envelope of circular
curves created by the trochoidal path of the center of the rounded
corner. The x and y coordinates of any point on the tooth fillet
are given by;

x =re - osin(s") , (A-4)
¥ = rg - cos(e") , (A-5)
6" =d + 65 , (A-6)
where;
any radius to fillet.

-
—'.,
non

B = distance from center line of hob tooth to
center of rounded corner on a hob,
b = distance from pitch line of hob to center of
rounded corner on hob,
A = radius of rounded corner of hob tooth,
d = angle between center line of gear-tooth space
and origin of trochoid,
6t = angle of trochoid in reference to trochoid
origin,
rt = any radius of trochoid,
vy = angle between tangent to trochoid and radius
vector,
rg = any radius to fillet,
6f = ang]e of fillet in reference to trochoidal
origin,
X = abscissa of any point on the tooth profile,
y = ordinate of any point on the tooth profile.

Sometimes a hob cutting tool with a protuberance tip (Figure A-20)
is used in order to produce undercut for finishing purposes. The
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FIGURE A-19.

FIGURE A-20.
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equations used to define the fillet are the same as for when using
a round cornered hob except that now (refer to Figures A-21, A-18
and A-19);

b=yt (A-6)
d = x¢/Rp (A7)
0f = 8¢ » ' (A-8)
re=res (A-9)

where;

¥yt = distance from pitch line of protuberance hob to
candidate cutting point on hob (variable),

Xt = distance from center line of protuberance hob
to candidate cutting point on hob (variable).

For all generation methods, the junction between the fillet and
involute is computed the same and is defined as the intersection
of the trochoid and involute curves, where;

Rtf = radius to top of fillet where fillet joins
involute,

by = distance from pitch line of hob to point of
tangency of rounded corner with straight-line
form.

In cases where undercut is present, (Figure A-22) there are two
possible intersection points and care must be taken to locate the
correct point.

For the shaper generaton methods when the tip is not fully
‘rounded, an approach similar to that used for hob generation
methods is used to compute the fillet coordinates. Referring to
Figures A-23 and A-24;

e1 = angle of rotation of gear (see e in Figure
A-23),

R¢ = pitch radius of shaper cutter,

ec = angle of rotation of shaper cutter (see e in
Figure A-23),

C = center distance between axis of gear and shaper

cutter,

Roc = outside radius of shaper cutter,

Nc = number of teeth in shaper cutter,

Tc = arc tooth thickness of shaper cutter at pitch
radius,

¢gc = pressure angle at tip of shaper cutter tooth.




FIGURE A-21. Defining a Single Point on a Trochoid Generated by a
Specific Point on the Hob Profile (et = roll angle;
rest of symbols explained in text) (4)
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FIGURE A-22.. Hob Producing Undercut (4)
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Equation (1)

FIGURE A-24. Geometry of Full-Rounded Shaper Cutter Tooth
(symbols explained in text) (4)




Rbc = base radius of shaper cutter.

The final case involves the use of a shaper cutter with a full
rounded tip. The program is structured so as to compute an
approximate value for the radius of the rounding (see Figure
A-24). The following quantities are used to compute the fillet
coordinates;

" ¢4¢ = pressure angle at radius to top of involute on
shaper cutter,
R;c = radius to top of involute profile on shaper

cutter,

arc tooth thickness of shaper cutter at top of
involute,

$qc = pressure angle at radius to center of rounding

on shaper cutter,
Rdc = radius to center of rounding on shaper cutter,

Tic

4.3. Bottom Land

The bottom land of each gear tooth is a portion of a circle,

the root circle. For half of a gear tooth this circle will extend
from the tooth space center line to the point where the fillet
begins. The rectangular coordinates are solved for by varying the
polar angle from zero to the angle at the start of the fillet and
using the following equations;

x =Ry - sin(s") , . (A-10)

y = Ry - cos(e") . (A-11)
4.4, Top Land

The procedure for determining the coordinates of the top land is
similar to that used in solving for the bottom land coordinates.
The angle measured from the tooth space centerline is varied from
6ti to &max and the outside radius is used in the polar
equations (refer to Figure A-25);

x =Ry * sin(e") , (A-12)
Yy = Ry - cos(e") , (A-13)
where;
50 = outside radius of gear,
6ti = angle from tooth space center line to top of
! involute on gear.
bmax = maximum angle from tooth space center line to

center of gear tooth.
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FIGURE A-25.

Start of fillet
e"

Geometry of Bottom and Top Land Sections on a Spur
Gear Tooth (symbols explained in text)
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5.0. DETERMINATION OF GEAR GEOMETRY FOR HELICAL GEARS

The profile of a helical gear is defined in exactly the same way
as a spur gear except that an additional parameter, the helix
angle, must be specified. The helix angle is defined such that:

tan(y) = (2 - = - R)/L , (A-14)
where;
¢ = helix angle,
R = pitch radius of the helical gear,
L = helical lead (axial advance of a scre thread in

one 360 degree turn).
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1.0. INTRODUCTION

During forming at any temperature, dies are subjected to
mechanical loading accompanied by fatigue loading (alternating
mechanical stresses) and the associated elastic deflection. At
elevated temperatures, the dies are also subjected to a) thermal
stresses, and b) fatigue stresses due to alternating temperatures
in the die. The die dimensions must be corrected to compensate for
the elastic deflection due to mechanical stresses and the bulk
shrinkage due to temperature differentials. The determination of
the elastic deflections of the die requires knowledge of the
stresses acting on the die during the forming process. A stress
analysis will not only calculate the elastic deflections but will
also calculate the forming load and energy. Bulk shrinkage of the
dies can be obtained by determining the average increase in
temperature of the die.

The changes caused on the dije inner surfaces due to reinforcement
rings (shrink fit assembly) can be initially neglected for the
design especially at higher temperatures as the order of magnitude
of these changes will be comparatively small. Any changes
necessary for these can be included into the machining allowance.

2.0 STRESS ANALYSIS

The most widely used technique to analyze stresses in furming
processes is the "slab method" (1)*. Spur and helical gears may
either be extruded or forged (the latter with more difficulty in
the case of helical gears). Hence, there are two entirely separate
cases which must be considered in the stress analysis. The stress
in the tooth cavity during extrusion will be analyzed by the slab
method suggested in reference 1. The forging stress will also be
analyzed by the slab method (2). The problems of cavity filling in
the forging process will be considered as a flashless forging
process and a method used in reference 3 will be used to predict
the required loads for various degrees of tooth filling.

2.1. Extrusion Process

In the extrusion process, a sawn or sheared billet is used. The
billet is annealed, surface treated (phosphate coating) and
lubricated (soap, graphite or molybdenum disulfide) for the cold

- s - . - -

*Numbers in parentheses refer to references at the end of the
appendix.
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extrusion process. For warm extrusion, the billet may be coated
with a Tubricant (graphite or molybdenum disulfide) and heated by
induction under protective atmosphere to the desired extrusion
temperature. A schematic of the extrusion process is shown in
Figure B-1. At the end of the extrusion process, the part can
either be ejected or a push-through extrusion principie can be
used. :

2.1.1. Total Punch Force Computation. The force required to
extrude a spur or helical gear is given by the following equation;

where;

Fp total punch force,
Fid = ideal deformation force,
Fch = force due to shearing of the material at the entry
and exit of the die,
friction force along the die walls and the punch

Fr

2.1.2. Breakdown of Friction Force. Figure B-2 shows the geometry
for the case of hollow forward extrusion using a stepped punch. In

this figure, the friction has been broken down into five (5).
components;

F] = friction on the container wall,

F2 = friction on the die shoulder,

F3 = friction on the die wall in the land zone,

F4 = friction on the mandrel wall in the deformation
zone,

Fg = friction on the mandrel in the die land.

The total friction force F¢, is made up of the sum of friction
forces F] through F5. '

2.1.3. Punch Pressure Computation. Once the total punch force
has been determined, the punch pressure must be computed;

= A £y 8-2
Py = Folhy (8-2)
where;
Pp = punch pressure.
Ao = cross sectional area of the gear.

2.1.4. Radijal Pressure Computation.

P. =P - . B-3
rmax p Ofo ( )
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This maximum radial pressure is used to calculate the radial and
tangential deflections of the die and permits the determination of
the corrected tooth geometry for the extrusion die.

2.2. Forging Process

In the process of forging helical or spur gears, the billet
diameter is slightly smaller than the root diameter of the gear.
Figure B-3 shows the schematics of a possible forging operation.
In this process, the material is extruded into the die radially.
However, to avoid confusion between this radial or lateral
extrusion process and the forward extrusion process mentioned
earlier, this process has been termed a forging process. The
billet is placed into the container and by the action of the punch
or both the punch and counterpunches, the material is forced into
the die cavity. In such a process, two regions of metal flow must
be analyzed as described below.

The first region of plastic flow involves the movement of material
into the tooth cavity until the outermost die surface is Jjust
touched by the material. This region has been analyzed using the
slab method. This condition is called "zero corner fill" and is
the minimum acceptable condition for the finished part. The second
region uses equations developed in reference 3 and assumes an
initial condition of "zero corner fill" and then proceeds to
compute the required punch force to achieve various. degrees of
corner filling.

2.2.1. Region 1.

2.2.1.1. Average pressure for the case of sticking and sliding
friction. For the purpose of stress calculations using the slab
method, a configuration of the gear tooth as shown in Figure B-4a
is used. Assuming the state of stress shown in Figure B-4b for the
triangular groove, the average pressure for the case of sticking
and sliding friction can be determined. Figure 4a does not
resemble a gear in the area near the tooth tip which necessitates
finding some way to model this area. Figure B-5 shows such a model
(10). However, the actual shape of the gear tooth and material is
a combination of Figures B-4 and B-5, one interpretation of which
is shown in Figure B-6. The punch pressure can be represented as
follows; S

P (B-4)

p=p+0f0’

where p is the average radial pressure for the case of sticking
and sliding friction.
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FIGURE B-6. Configuration of a Spur Gear Tooth Prior to Corner
Filling (symbols explained in text)




2.2.2. Region 2

2.2.2.1. Background. When forging spur and helical gears, the
most difficult area in which to achieve proper filling is at the
corner of each tooth tip. If a model, such as the one described in
the previous section is used, the value of a may be sufficiently
small for the proper mechanical function of the gear. However, if
a 1is too large, then more material will need to flow into the tip
corners in order to produce a properly functioning gear. This will
require an additional punch force. The previous analysis does not
give a methodology to compute the additional forces required for
any desired corner filling.

2.2.2.2. Definition of the final material position. For this
analysis, an initial position for the material will be assumed to
be the same as suggested in Figure B-6. Any further movement of
the top punch will flatten out the top and the corner filling
process will begin, as shown in Figure B-7. This is analogous to
an upsetting process where the material at the tooth tip is forced
into the corners. The area which will be upset and fill the corner
can be calculated using formulas found in reference 8. To obtain
the maximum radial pressure on the die wall, this pressure must be
"transferred" back to the inner radius of the billet. Once the
maximum radial pressure has been determined, Equation (B-4) may be
used to calculate the maximum punch pressure.

In Appendix G, the computed values for a given tooth geometry have
been analyzed. The finite element formulation used in this project
for computing the forces required to fill the corners has been
compared with both the formulations in this appendix. The most
appropriate method has been utilized in the computer program.

3.0 ELASTIC DEFLECTION OF TOOL

The tools (dies) deform under forming load. The deformations are
generally elastic if a proper die material with appropriate
mechanical properties is selected. Using the radial pressure
obtained from the previous stress analysis, the elastic deflection
of the die, due to loading, can be computed using a finite element
code available at Battelle (6). A preliminary simple calculation
with the average value of mechanical stresses showed that the
order of magnitude of this correction is very small. To determine
if the additional accuracy of the FEM analysis would be desirable,
a simple finite element elastic analysis using a program available
at Battelle was conducted.

3.1. Finite Element Analysis

The finite element method computed the loads and displacements of




FIGURE B-7.  Schematic of the Metal Flow During Corner Filling
(symbols explained in text)




each of 57 nodes in an 11 element mesh. The mesh used is shown in '
Figure B-8.

3.2. Simplified Analysis

The elastic deformation due to mechanical loading, using a
simplified approach, proceeds as follows. Using the previous
forming stress analysis for a particular spur gear, the radial and
tangential stresses at node 14 can be determined using an elastic
thick shell model (11) for the die (see Figure B-9). The effect of
this elastic deformation is to increase the cavity of the die.
Hence, the die thickness should be made bigger {die cavity
smaller) to compensate for the elastic deflection due to
mechanical stresses. Table B-1 lists the radial displacement of
three nodes on the die, nodes 1, 10, and 14, for different values
of the inner radius using the simple thick cylinder approach. The
gear die does not represent a true cylinder. The inner radius of
an equivalent cylinder would lie somewhere between the root radius
and the outside radius of the gear.

3.3. Comparision of FEM and Simple Analysis

Referring to Table B8-1, when a = 1.18 (the pitch radius), the
deflection computed using the simple approach came to within eight
percent of the FEM results. Thus, it seems reasonable to choose
the inner radius of the die to be equal to the pitch radius of the
gear. This would allow the much simpler, less time-consuming and
less costly thick-walled cylinder equations for calculating the
elastic die delfections rather than doing a detailed FEM analysis.
The errors introduced in the die design by using the simplified
approach will be much smaller than the manufacturing tolerances on
the die.

4.0. BULK SHRINKAGE DUE TO TEMPERATURES

If spur and helical gears are hot/warm formed, the temperature of
the die will increase during the forming operation due to heat
transfer from the heated billet. The following are the outcome of
the thermal interaction between the die and the billet:

e The dimension of the billet increases as it is heated from
room temperature to the forming temperature. The dimension
of the billet changes further during the forming operation
due to (a) temperature increases because of heat generation
due to plastic deformation, and (b) temperature drop
because of heat loss from the billet to the dies. The
change in temperature of the billet is not constant over
the entire cross section, but varies depending on the local
deformation and heat transfer.
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FIGURE B-9.  Thick Shell Model of a Spur Gear Die (a = inner

radius; b = outer radius; P; = inside pressure; Py =
outside pressure)




TABLE B-1. Variation in Radial Displacement with Different Inner
Radius Values (b = 1.72)

a u1 ulO ul4
-3 -3 -3
Thick 1.01 2.69 x 10 2.44 x 10 2.29 x 10
Cylinder 1.18 - 11.12 x 1073 3.18 x 107>
Approach 1.32 - o 6.23 x 10—3
FEM 4.11 x 1072 3.81 x 1073 3.47 x 1073




e After forming, the formed gear may be cooled in a sand-
graphite bath to room temperature. During this period, the
magnitude of the gear dimensions decreases.

A heat transfer analysis during forming and subsequent cooling
must be done to compensate for the changes in the gear dimensions.
The temperature distribution during the forming cycle can be
determined using the finite differencing technique. Using a
computer program developed for this, the temperatures at the
various parts of the die and the billet could be determined. From
these values, the individual contraction/expansion of the various
points in the billet and die could be computed. In the present
approach however, an average change of die and billet temperature
is computed from the heat transfer analysis - correction for the
temperature changes 1is, therefore, uniform for all points in the
billet and die. The reasons for making this approximation are:

e The forging cycle is very short (a few milliseconds).
During this time, the gear is also restricted from
expanding by the die and causes additional elastic
deflection of the press frame. Hence, variations in
temperature changes cannot be compensated for exactly.

e Some machining may have to be done on the gear tooth (based
on the available technology to produce dies with the
required surface finish and accuracy). Machining allowance
also will take care of some of the errors introduced in the
chosen approach.

The die cavity should be made larger to accommodate the higher
temperature billet and the heated die.

4.1. Temperature Effects on the Die

The steady state temperature of the die during forming has been
estimated using a one-dimensional, coaxial cylinder heat transfer
analysis (12). Figure B-10 shows the heat transfer model of the
die assembly and an electrical analog used in this analysis to

compute the bulk shrinkage of the formed gear due to temperature
effects.

4.2. Ambient Temperature Effects

Another important aspect of the effect of temperature on the die
design is the cooling of the forged/extruded gear from forming
temperature to ambient temperature. Due to differential cooling of
the gear at various sections, distortion of the gear tooth could
result. No special correction factors have been assumed for
distortions. Controlled cooling procedures (cooling in a sand-
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FIGURE B-10. Coaxial Cylinder Heat Transfer Model of Spur/Helical
Gear Tooling (symbols explained in text)




graphite mixture for example) will be used during trials.

5.0 BULK SHRINKAGE DUE TO SHRINK FIT ASSEMBLY

The second aspect of bulk shrinkage is the change of inner die
dimensions due to shrink-fitting of the die assembly. These should
also be compensated for to achieve the desired dimensions on the
finished gear. A sinple solution based on thick circular cylinders
under internal pressure has been used to compute the changes on
the inner diameter of the die assembly.

5.1. Definition of the State of Stress

Figure B-11 shows a model of the tool assembly used to compute the
amount of shrinkage in the gear insert due to the interference
fit. The stress distributions in the die under external and
internal pressures are shown in Figure B-12. Since the ends of the
die are free, a plane stress condition can be assumed. During
shrink fitting, the inner radius of the outer ring increases by Uy
and the outer radius of the insert decreases by uj (refer to
Figure B-13). In order to model the interference fit, it was
assumed that the inner cylinder was subject to an external
pressure p* and the outer cylinder to an internal pressure of p*.
This interference pressure p* will cause a change, uaz, at the
inner radius of the insert. A quantitative stress distribution due
to shrink fitting is shown in Figure B-14.

The quantity, o5 - op at the inner radius of the insert is
critical for no yielding of the insert due to internal pressure.
This criterion is widely used to design such assemblies; the
interference radius, the outer ring, outer radius and the
interference are computed using the strength properties of the
inner and outer ring materials and the internal pressure to be
transmitted. Some of the interference may be lost due to machining
tolerances on the inner and outer ring common radii. With the
known value of this interference, the change in the insert inner
radius can be computed and used in correcting the die geometry.
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FIGURE B-11. Die Under Internal and External Pressure (symbols
explained in text)
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FIGURE B-12. Stress Distribution in Die Under a) External, and
b) Internal Pressures (symbols explained in text)
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1.0. INTRODUCTION*

In precision spur gear forging, the teeth forming operation is.
performed so that no finish machining on the teeth is required
after forming. An accurate estimation of forging load is important
because of the large loads required to fill the gear tooth cavity,
which could cause machine over-loading, extensive die wear, and
premature die failure. In particular, the filling of the gear
tooth tip corner is critical because of functional requirements of
the gear and because the maximum loading occurs at this stage.

2.0. METHOD OF ANALYSIS

2.1. Geometry

Metal flow and loading after the workpiece touches thé gear top
land and during the tooth tip corner filling were simulated using
ALPID (1) , a rigid-viscoplastic FEM program. Figure C-1 shows the
assumed initial gear tooth configuration. Previous studies have
been conducted to investigate the workpiece profile before this
stage for dies similar to the spur gear tooth cavity (2). This
provided an approximation for the workpiece initial geometry.
Although this forging operation is three~dimensional in nature,
the simulation used a two-dimensional model and assumed that the
forging operation could be approximated by a plane strain process.
The simulation continued until the workpiece had completely filled
the die cavity. The method used in the present study is based on a
rigid-viscoplastic formulation. It is an extension of the rigid-
plastic finite element method, developed by Lee and Kobayashi (3).

The details of the present method are discussed in earlier
publications by Oh, Rebelo, and Kobayashi (4) and by 0Oh (5).

2.2. Model Material

A rigid-viscoplastic material is an idealization of an actual
material, by neglecting the elastic response. The material shows
the dependence of flow stress on strain rate in addition to the
total strain and temperature. It can sustain a finite load without

- - - - -

*Work described in this Appendix was conducted at Battelle under
the direction of Mr. Jeff Ficke.

Numbers in parentheses refer to references at the end of the
appendix
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deformation. The rigid-viscoplastic material was introduced in
this study for analytical convenience. It simplifies the solution
process with a less demanding computational procedure. Moreover,
the idealization offers excellent solution accuracies due to the
negligible effects of elastic response at large strains in the
actual material.

2.2. Mathematics

2.2.1. Constitutive Equation. The constitutive equation during
forming is represented by;

2 o .

e =5 = C_l

TR AR (c-1)
where;

cjj = deviatoric stress component,
€ij = 1/2 * (Vi,j + Vm,i); strain rate component,

V = velocity component,

, = differentiation,

g = effective stress,

§ = effective strain rate.

2.2.2. Effective Stress. The effective stress, o, in general, is
a function of total strain and strain rate and is expressed as;

5=35(s & T) , (C-2)
where;

e = effective strain,

T = temperature.

In the case of rigid-plastic formulation, o becomes a function of
the total effective strain only.

2.2.3. Variational Principle Functional. The variational
principle functional for the rigid-viscoplastic material can be
written as;

2

= JE(E) - dv- [F-uk-ds+ 1K Cdv , (C-3)

" ()
where;

m
o~~~
™.
~
1

= work function; (integral of the effective stress
with respect to the effective strain rate),
volume,

force,

velocity,

surface,
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K = large positive constant which penalizes the
dilation strain rate component,
Ekk = dilation strain rate component.

It can readily be shown that the mean stress is om=K * €kk- The
above functional reduces to that of a rigid-plastic material if G
is a function of ¢ only.

2.2.4. Velocity Solution. The velocity solution obtained by
minimizing Equation (C-3) is the instantaneous solution. The
geometry of the workpiece and the strain values can be updated by;

X(m)=X(m-])+D(m)'At,

21 21 =1
EJ(m) - EJ(m+1) +o(m) « oAt (C-4)
where;
X1 = coordinate of the I-th node,
uy = velocity of the I-th node,
gy = effective strain at the J-th element
At = time increment during which the deformation can be

approximated as linear.

2.3. Solution Procedure for a Spur Gear Tooth Forging Process

2.3.1. Problem Statement. The spur gear simulated had

14 teeth with a diametral pitch of 5.921. The gear outside
diameter and inside diameter were 2.634 in. (66.9 mm) and 1.375
in. (34.925 mm), respectively.

2.3.2. Modeling of the Gear Tooth. Due to symmetry and in order
to reduce computational costs, only one-half of one gear tooth was
considered for the simulation. The die cavity and initial FEM mesh
are shown in Figure C-2. The gear tooth die profile was
approximated by a series of 15 points on the involute profile.
These points ranged from the gear top land to the dedendum with
the highest concentration on the large curvature regions. The
points were connected using straight line segments to complete the
outer die definition. :

2.3.3. Initial Configuration. As shown in Figure C-2, the
simulation started from the point when the upper profile of the
workpiece just contacted the top land of the gear. Metal flow from
a tubular preform to this stage was not simulated, so the

workpiece shape before this stage was approximated using empirical
formulas (2).

2.3.4. Empirical Model. The model for the empirical
representation of the tooth geometry is shown in Figure C-3. This
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simplified model assumes a constant wall thickness and represents
the initial profile in terms of two parameters; Ay and R.. A
represents the difference between material flow a?ong the centra]
axis and the die surface. Hence, the value of Ay is dependent on
metal flow parameters such as friction and temperature. A, was
selected for the simulation using the following equat1on,

Ao =k --d, (C-5)
where;
d = tooth thickness,
k = 0.067 to 0.1.

The constant k depends on the friction factor. For low frictional
conditions, the lower constant (0.067) is used, while for high
frictional conditions the higher value (0.10) applies. The value
of k ranges between the two extremes depending on the friction
factor selected. R¢ represents the radius of a particle sphere
passing through the die surfaces a distance A, from the top land
and contacting the top land at the center of the tooth tip. In
terms of Ay and d, defined above, the equation for R¢ is given by;

R = (d/4 + AZ)/(2 - Ag) . (C-6)

Since the spur gear tooth thickness is not constant, the process
of solving for the values of A, and R, is iterative. Using the
thickness as the convergence variabie, a friction shear factor of

= 0.08, and, because of the low frictional constant, k equal to
0.067, the solution converged to the initial workpiece profile
geometry of;

Ag

Re

0.01072 in.,
0.322 in.

2.3.5. Mesh Generation. The finite element mesh was generated
(using an automatic mesh generator) with a large concentration of
elements in the regions that were anticipated to come into contact
with the outer die cavity. It can be seen in Figure C-3 that the
element spacing was the smallest near the unfilled corner. This
provided for proper representation of the tight corner radius.
Displacement boundary conditions were placed on the left and right
straight edges of the mesh to prevent material movement over these
axes of symmetry.

2.3.6. Material Representation. The simulation was carried out

using a nearly perfectly plastic material flow stress
representation as follows;

5=1.:0-03 (C-7)
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A plot of this flow stress curve compared to a perfectly plastic
representation is shown in Figure C-4. This flow stress behavior
was selected over the perfectly plastic representation because it
provided a smoother flow stress curve which aided in the solution
convergence while introducing only a small error into the material
representation.

2.3.7. Inner Die Modeling. ~The inner die radial pressure was
simulated by providing the 12 nodal points along the inner
diameter with a unit velocity boundary condition in the radial
direction. The magnitude of the nodal velocity does not affect the
simulation results because it was assumed that the material was
highly rate-insensitive.

3.0. RESULTS AND DISCUSSIONS

The simulation was carried out until all free nodal points
defining the unfilled corner contacted the gear tooth die cavity.
This was accomplished in a step-by-step manner in which the step
size was controlled so that the solution was updated each time a
new node contacted the die cavity. The solution was completed in
seven steps with a total inner die nodal point movement of 0.003
inch in the radial direction.

3.1. Grid Distortion Plots

Grid distortion plots generated for simulation steps 0, 2, 4, and
6 are shown in Figure C-5. There was a small amount of grid
distortion during the final filling process. Also, at this stage
of the forming process, a very small movement of the inner die

caused a relatively large amount of metal flow into the unfilled
corner.

3.2. Load Estimation

The load estimation for the corner filling of the gear tooth was
predicted by the simulation. The load values predicted by ALPID
are "normalized" loads because the material flow stress
representation was assumed to be nearly perfectly plastic. This
load can be considered as the actual load divided by the material
yield stress at the appropriate location on the flow stress curve.
The radial pressure predicted by ALPID, which is the load divided
by the inner surface area, is plotted in Figure C-6. The inner die
surface area, assuming a unit thickness, is equal to the inner die
arc length. The radial pressure is plotted against the contact
length of workpiece material with the gear top land, measured from
the tooth centerline. In addition to the load and metal flow
characteristics predicted by ALPID, the program also predicted
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local information about stress, strain, and velocity distribution.

The effective strain rate values averaged between 5 and 10 1l/sec.

Using this average value, the maximum error entered into the

calculations because of the smoothing of the flow stress curve was

estimated at between 5 and 7 percent. This is compared with the -
perfectly plastic material behavior (¢ = 1.0).

4.0. CONCLUSIONS

The spur gear tooth corner filling simulation has been analyzed.
Using empirical relationships to approximate workpiece shape and
profile before the material contacted the gear top land, metal
flow was simulated by FEM until the material had filled the die
cavity. The analysis showed that with a small displacement of the
inner radijus (three-one-thousands of an inch in the radial
direction), the gear tooth corner filled.

Metal flow was limited because of the small amount of material
movement that was required. Excluding the material close to the

tooth corner being filled, the finite element grid did not distort
extensively.

The inner die pressure required to fill the gear predicted by

ALPID was computed by assuming a 2-D plane strain deformation

condition. Hence, the load and pressure values predicted are the

radial pressure required to deform the gear assuming the pressure

is in the transverse plane of the gear. .
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1.0. INTRODUCTION

The computer-aided design/computer-aided manufacturing (CAD/CAM)
software developed for this project is contained in the GEARDI
program. The program can be used to design a wide variety of spur
and helical gears and the tools needed to extrude or forge them.
To demonstrate the full range of capabilities of this program, a
step by step procedure which was used to design a sample helical
gear extrusion die and a spur gear forging die and punch will be
explained in detail. Figures are included wherever a new page is
displayed on the computer terminal screen.

2.0. HELICAL GEAR EXAMPLE PROBLEM STATEMENT

This particular example deals with the design of an extrusion die
for the manufacturing of a helical gear which is cut on a gear
hobbing machine. The only information available was the original
gear drawing. The particular hob which was used to cut the gear
was not known nor were any of the hob dimensions known. The gear
material was AISI-1016 with an annual production requirement of
20,000 parts. The only forming equipment available was a 500 ton
mechanical press which had a maximum stroke of 10.0 inches and a
maximum speed of 50 strokes per minute.

2.1. Program Execution

- The first step in solving this design problem using the GEARDI was
to type "RUN GEARDI" after logging on to the computer.

2.1.2. Geometry Input. Next, the program required that the user
enter the known geometrical parameters. Figure D-1 shows the
appearance of the first page of the design session at the computer
terminal. The gear tooth generation method had to be chosen from
among six options as described in Appendix A. The user now had to
input all of the gear geometrical parameters as requested by the
program (Figure D-2). Upon completion of the data input, the user
was allowed to check any of the previously entered data and change
it as necessary. When the data was being checked, the screen was
cleared and all of the gear geometrical parameters were
re-displayed on the screen for reference during the change routine
(Figure D-3).

2.1.3. Tooth drawing. On the next page of the program, the gear
tooth profile was drawn in both the transverse and normal planes
with the transverse plane always having the widest of the two
profiles (Figure D-4).
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2.1.4. Gear drawing. The following program page (Figure D-5)

shows the entire gear (user requested) which allowed for an

additional visual check of the gear geometry. At this point, the

user could have decided to eliminate the forming analysis in which

the forces, loads, and deflections in forging or extrusion tooling :
would be calculated. In this example, the user decided to conduct

a forming analysis. ‘

2.1.5. Forming parameter inputs. The forming analysis parameters
for the cold extrusion process were typed into the program as 1
shown in Figure D-6. i

2.1.6. Checking of forming parameters. The next program page
(Figure D-7) re-displayed the forming parameters and the assigned
default values. At the completion of the forming analysis, four
values were displayed:

o the maximum limiting value for the flow stress of the
selected material (based on room temperature),

e the ratio of the punch pressure to the maximum flow stress
for the defined process,

e the maximum punch pressure, and
e the punch force.

Remembering that the available forming equipment consists of a 500 :
ton mechanical press, the user decided to make a change in the

forming parameters since the computed punch force of 559 tons

exceeded the press capacity.

2.1.7. Change of parameters. On the next program page, as shown
in Figure D-8, the user selected the third forming parameter to be
changed in an effort to lower the required tonnage for extrusion
of the chosen gear.

2.1.8. Display of new gear forming parameters. Figure D-9 shows
the new gear forming parameters as displayed by the program along
with the results of the forming analysis conducted using the new

values. These results indicated that the punch force of 443 tons

was within the limits of the available mechanical press.

2.2. Qutput Display.

2.2.1. Original and corrected geometries. Proceeding from the

forming analysis, the computer displayed the gear geometrical

parameters and also the original gear tooth profile along with the

corrected geometry based on the deflections computed in the .-
forming analysis (Figure D-10).
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2;2.2. Fillet altering. Figure D-11 shows that the user was
permitted to alter the fillet of the gear cut by the new cutting
tool but this option was not chosen.

2.2.3. Display of corrected geometry and the geometry created by
the new cutting tool. Both the corrected and new cutter
geometries were displayed on the screen as shown in Figure D-12.

- The geometrical parameters printed to the left of the drawing
corresponded to the new cutter and the gear generated by the new
cutter. The location and magnitude of the maximum radial error was
also displayed.

2.2.4. Creation of Electrical Discharge Machining (EDM) files.
On the last program page for this example (Figure D-13) the user
could have had the program write two data files which contain
cartesian coordinates describing the entire circumferential
geometry of the corrected die geometry and the geometry of a
corresponding punch (to be used to burn the die and punch using
the method of EDM). This option is explored completely in the
following example.

3.0. SPUR GEAR EXAMPLE PROBLEM STATEMENT

The second example in this appendix deals with the design of a
forging die for manufacturing a spur gear. The gear geometry was
available from a blueprint but the design had not been used
before. Hence, it was somewhat arbitrary as to whether a hob or
shaper cutter generation method should have been used to cut the
gear in a conventional manufacturing operation. The particular
application in which this gear was to operate was known, as were
the dimensions of the mating gear and the configuration of the two
gears in relation to each other. So, the forging die was designed
based on generation method number 6, mating gear/ operating
conditions. Annual production requirements were not known but the
type of forming equipment to be used was a 1,600 ton hydraulic
press.

3.1. Spur Gear Example Program Results

3.1.1. Program Initialization. As in the first example and in
all cases, the first step in any solution process is to specify
the input geometry format (Figure D-14).

3.1.2. Geometry Input. Figure D-15 shows the process by which
the gear geometry was entered for this case.

3.1.3. Checking of Data. The geometrical parameters previously
input, were re-displayed as shown in Figure D-16. The clearance
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was set to zero during the change sequence as shown in Figure
D-16.

3.1.4. Geometry Check. On the next page of the program session,
the user was once again asked if any data was to be changed and
the user responded "N" (Figure D-17).

3.1.5. Altering of Fillet. At this point, the user was able to
alter the fillet (Figure D-18) but this was not pursued. The gear
tooth profile was then drawn in the transverse plane.

3.1.6. Drawing of Gear. As shown in Figure D-1Y the entire gear
was drawn.

3.1.7. Display of Corrected Geometry. The corrected geometry,
which in this case was identical to the original geometry since no
forming analysis was done, was displayed as shown in Figure D-20
along with the original geometry. A geometry file was specified
which was read back into the program in the next step (see Figure
D-21 and paragraph 3.1.13). The user chose to create a new cutting

tool and also chose to use a new type of cutting tool. Figure D-21
- shows the program sequence for specifying the FORML.DAT data file
as the new cutter geometry.

3.1.8. Altering of Fillet. In this example, the user inijtially
used the default values for each of the four fillet altering
parameters, as shown in Figure D-22.

3.1.9. Display of Original and New Fillet Geometries. Figure
D-23 shows the new fillet geometry along with the geometry of the -
original fillet.

3.1.10. Checking of New Cutter Parameters. The new cutter

parameters were displayed for checking by the user as shown in
Figure D-24.

3.1.11. Display of New Fillet Parameters and Corresponding
Geometry. Figure D-25 shows the new fillet parameters entered by
the user. The geometry generated by this altered cutter was
displayed (Figure D-26) along with the corrected geometry. An
analysis file was written at the end of this program page.

3.1.12. Creation of Electrical Discharge Machining (EDM) Files.
The next option available to the user was to create EDM files
(Figure D-27) to cut the geometry generated by the new cutter.
However, since no forming analysis had been done, this geometry
was not correct. The program had to be run again using the new
geometry and the altered fillet.

3.1.13. Input of Previously Created Data File. Figure D-28 shows

D-22
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the sequence by which the user specified the name of the
previously created data file (see paragraph 3.1.7).

3.1.14. Altering of Fillet. The fillet was altered in exactly
the same fashion as in Figure D-25. The tooth was displayed
(Figure D-29) just to make sure that the correct tooth form was in
the memory of the program.

3.1.15. Drawing of Gear. In Figure D-30, the entire gear with
the altered fillet was drawn. At this time, the user indicated
that a forging analysis was to be conducted.

3.1.16. Input of Forming Parameters. Prior to the forming
analysis, the user had to enter all of the forming parameters as
shown in Figure D-31.

3.1.17. Results of Forming Analysis. On the next program page
(Figure D-32), the forming parameters were echoed. In this
example, the punch pressure was computed to be approximately 193
KSI. The user decided that the punch pressure could be slightly
larger, so the choice was made to alter the forming parameters in
an effort to improve the final forging geometry.

3.1.18. Changing of Forming Parameters. Figure D-33 shows the
next page of the program session and the way in which the percent
fill desired in the process was altered.

3.1.19. Results of New Forming Analysis. The new set of forming
parameters along with the results of the second forging analysis
were displayed on the terminal screen (Figure D-34).

3.1.20. Display of Corrected Tooth Profile. The next program
page (Figure D-35) displayed all of the geometrical parameters
relating to the design gear and the original and corrected tooth
profiles.

3.1.21. Creation of Electrical Discharge Machining (EDM) Files.

"~ In Figure D-36, the user chose to have an EDM file created for
manufacturing the forging die. On the same program page, the user
chos§ to have an EDM file created for the forging punch (Figure
D-37).

3.1.22. Comparison of Original Gear and Gear with Altered Fillet.
Figure D-38 shows a comparison of the original gear and the gear
with the altered fillet. Notice that the altered profile seems to
extend into the tooth space. However, when the geometry was
specified (Figure D-15), no clearance was given. The tooth form
drawn in Figure D-18 was really the path of the mating gear which,
as seen in Figure D-26, does not interfere with the altered
fillet. The solid 1ine of Figure D-38 shows the original gear
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Original Tooth Geometry
------- Altered Tooth Geometry

FIGURE D-38. Spur Gear Example; Comparison of Original and
Altered Gear Tooth Profiles
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geometry plus clearance.

4.0. SUMMARY

The above two examples show many of the capabilities of the GEARDI
program which enable the metalforming and also the design engineer
to solve a wide variety of gear production and application
problems. The program was written in segmented form with each
distinct computation process included in a specific region of the
program. Thus, as more options are desired, they can be readily
incorporated into the program. The potential number of

applications for the GEARDI program are limited only by the
abilities of the user.
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APPENDIX E

'DESCRIPTION OF THE COMPUTER PROGRAM "GEARDI"
(USERS MANUAL)
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1.0. INTRODUCTION
A computer program named GEARDI, was developed to:
e define the exact tooth form of a spur or helical gear,

e compute the forming load required to produce the current
gear design,

e compute the coordinates of the corrected gear geometry
necessary for machining the Electrical Discharge Machining
(EDM) electrodes by taking into account the change in the
die geometry due to temperature differentials, load
stresses, and shrink fitting, and,

o determine the specifications of a tool which will cut the
altered tooth geometry on a conventional hobbing or shaper
cutter machine.

The flowchart of the GEARDI program is shown in Figure E-1. This
appendix describes the options available in the computer program.
The use of this program with some examples is summarized in
Appendix D.

2.0. TOOTH GEOMETRY

For the purpose of defining the tooth geometry, equations have
been described using standard spur and helical gear tooth .
parameters. These equations have been presented in detail in

~ Appendix A. To define the tooth geometry using these equations, a
list of standard gear parameters must be supplied to the program
by the user. This list of parameters is shown in Figure E-2. In
the case when the user chooses to define the cut gear based on a
protuberance hob cutting tool, extra hob parameters must be keyed
in to the program; protuberance distance, parallel land length,
and protuberance angle (Figure E-3). Normally, a hob or shaper
cutter will cut a fillet in the shape of a trochoid. However, the
GEARDI program has the capability of altering the fillet to an
elliptical shape, as defined in Figure E-4.

Using the supplied input data for the generation of the tooth
geometry, the interactive computer program GEARDI computes the x
and y coordinates of the points describing the profile of the gear
tooth. After computation, GEARDI displays the profile of a single
gear tooth on the interactive graphics terminal. The display shows
the locations and values of the major radii on the gear. The
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FIGURE E-la. Flowchart of the GEARDI Computer Program
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FIGURE E-1b.
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Deflection,
28. | & Temperature
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26. Change
Forming

Parameters ?,

Flowchart of the GEARDI Computer Program
(continued)
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FIGURE E-lc.  Flowchart of the GEARDI Computer Program
(continued)
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FIGURE E-1d.

Flowchart of the GEARDI Computer Program
(continued)
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FIGURE E-le. Flowchart of the GEARDI Computer Program
(continued)
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HELICAL GEAR EXAMPLE

GENERATION METHOD 2
NUMBER OF GEAR TEETH 18
WUMBER OF PINION TEETH 0
TRANSVERSE DIAMETRAL PITCH . 6.00000
NORMAL DIAMETRAL PITCH 6.23166
HELIX ANGLE 15.67182
GEAR OUTSIDE DIAMETER 3.33333
PINION OUTSIDE DIAMETER 0.00000
TRANSVERSE PRESSURE ANGLE 27.50000
NORMAL PRESSURE ANGLE 26.62071
GEAR TRANSVERSE TOOTH THICKNESS 0.26180
GEAR WORMAL TOOTH THICKNESS 0.25207
HOB/PINION TRANSVERSE TOOTH THICKNESS 0.26180
HOB/PINION NORMAL TOOTH THICKNESS 0.25207
GEAR ADDENDUM 0.16667
GEAR DEDENDUM 0.20833
HOB/PINION ADDENDUM 0.20833
HOB/PINION DEDENDUM 0.16667
HOB TOOTH CORNER RADIUS 0.03000
HOB PROTUBERANCE DISTANCE 0.00000
HOB PROTUBERANCE ANGLE 0.00000
HOB PROTUBERANCE PARALLEL LAND LENGTH 0.00000
SHAVING STOCK 0.00000
GEAR-PINION CENTER DISTANCE 0.00000
GEAR-PINION BACKLASH 0.00000
GEAR-PINION CLEARANCE 0.00000
GEAR TIP RELIEF DEPTH ) . 0.00000
GEAR TIP RELIEF ARC 0.00000
TIP RELIEF FLAG 0
GEAR TIP CHAMFER DEPTH 0.01667
GEAR TIP CHAMFER ARC 0.01370
ALTERED FILLET MAJOR AXIS 0.00000
ALTERED FILLET MINOR AXIS 0.00000
ALTERED FILLET OFFSET ANGLE 0.00000
ALTERED FILLET CENTER LOCATION 0
GEAR ROOT RADIUS 1.29167
GEAR PITCH RADIUS . 1.50000
GEAR QUTSIDE RADIUS 1.66667
GEAR TRANSVERSE CIRCULAR PITCH 0.52360
GEAR MORMAL CIRCULAR PITCH 0.50413
GEAR BASE RADIUS 1.33052
GEAR TIP TOOTH THICKNESS 0.03854
UNDERCUT FLAG 0
CEAR OUTSIDE DIAMETER DEFAULT FLAG 1
GEAR TRANSVERSE BASE PITCH 0.464LY
GEAR MORMAL BASE PITCH 0.45069
GEAR LEAD : 33.59313
EQUIVALENT NUMBER OF TEETH 20.16651
GEAR AXIAL PITCH 1.86629
MEASURING PIN DIAMETER 0.27500
GEAR OVER PINS DIMENSION 3.38109
GEAR BETWEEN PINS DIMENSION 2.62u18
EXTRUSION 2
DIE ANGLE 50.00000
coLD 1
BILLET OUTSIDE DIAMETER 3.40000
BILLET INSIDE DIAMETER 1.56500
BILLET THICKNESS 1.48320
FINISHED GEAR THICKNESS 2. 10000
FRICTION FACTOR 0.08000
PERCENT FILL 100.00000
MATERIAL YIELD STRENGTH (KSI) 20.56985
AS1016.DAT

INTERFERENCE SHRINX FIT 0.00350
COLD EQUATION COEFFICIENT 104.80000
COLD EQUATION EXPONENT 0.26200

FIGURE E-2. Sample Data File
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FIGURE E-3. Protuberance Hob Dimensions
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FIGURE E-4. Altered Gear Tooth Fillet Geometry (a = transverse
axis; b

= radial axia; o = offset angle)




program then draws the entire gear for visual checking.

3.0. FORMING LOADS

After the geometry for the gear has been defined, the user may
choose to compute the load required for successful forming of the
designed gear. Prior to this computation, the user must supply the
program with various forming parameters. One of these
manufacturing parameters is percent fill. The amount of filling is
computed as a percentage of the length along the tooth tip of the
die where the material has not yet come in contact. Figure E-5a
shows a gear tooth cavity with zero percent fill and Figure E-5b
shows a gear tooth cavity with 50 percent fill. Another
manufacturing parameter defined by the user is the die angle
(extrusion analysis only). The die angle is measured as shown in
Figure E-6. The program computes the required punch pressure,
punch force, and the ratio of the punch pressure to the maximum
flow stress. :

4.0. DIE CORRECTIONS

In the third stage, the program GEARDI calculates the change in
the dimensions of the gear due to (a) the elastic deflection of
the die during forming, (b) the shrink or press fitting of the die
insert into the reinforcing ring, and (c) the change in the size
of the die due to temperature effects if a warm forming process
has been specified. No additional parameters must be specified at
this point which have not already been defined in the previous
sections of the program. After the die corrections have been
calculated, the program displays the profile of a single gear
tooth in both its original form and its corrected form.

5.0. NEW CUTTER/QUTPUT FILES

In the final stage of the program, the user is able to experiment
with a variety of hobs and shaper cutters to see which one will
cut the corrected tooth geometry most accurately. A1l of the
design parameters used previously in the geometrical definition of
the gear are also used in this section. The program automatically
determines the maximum amount of radial error between the
corrected tooth geometry and the geometry cut by the newly
designed gear cutting tool. An added advantage of this section of
the program is that it can be used to design hobs and shaper
cutters if the user has previously chosen to omit the forming
analysis. In this case, the corrected geometry is the true
finished tooth geometry.




(a)

FIGURE E-5. a) 0.0% and b) 50% Filling of Gear Tooth Cavity
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FIGURE E-6. Die Angle Specification
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After the new cutting tool has been designed, the user may create
an output file containing all the geometrical and forming input
parameters, the results of the forming analysis, the new cutter
specifications, and a list of coordinates for use in EDMing of the
forging punch and/or the forging and extrusion dies to be used to
form the gear.

In its present form, GEARDI can be run on both a Digital Equipment
Corporation PDP-11/44 (RT-11 operating system) or a VAX 11/780
(VMS operating system). Also required is the PLOT10 TCS graphics
software package from Tektronix, Inc. The source code is
approximately 7500 lines long (counting comment lines) and the
program can be used in the interactive mode only.
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APPENDIX F

STRUCTURE AND SUBROUTINES OF THE COMPUTER PROGRAM
"GEARDI"
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1.0. INTRODUCTION

The. computer program GEARDI and its use are described in Appendix
E. Following is a description of the program structure and the
various subroutines. A1l subroutines were written in standard VAX
(Digital Equipment Corporation VAX 11/780 computer) FORTRAN. The
listing of the program includes a large number of comment
statements. Thus, the programmer can follow the details of GEARDI
by utilizing the information given in the present appendix
together with:

e Appendix A - Generation of Gear Tooth Geometry for Spur and
Helical Gears, ’

e Appendix B - Stress Analysis, Elastic Deflection and Bulk
Shrinkage.
2.0. PROGRAM STRUCTURE
The structure of the program GEARDI is shown in Figure F-1. The
main program and all the subroutines of Figure F-1 are described

below.

2.1. PLOT10 Subroutines

e ANCHO - outputs an ASCII character to terminal

e ANMODE - prepares terminal for alpha-numeric output

e CHRSIZ - sets character size on terminal

o DASHA - draws dashed ]ﬁnes in absolute user coordinates
e DRAWA - draws using absolute user coordinates

e DRAWR - draws using relative user coordinates

e DRWREL - draws using relative screen coordinates

e DSHREL - draws dashed lines in relative screen coordinates
e HOME - returns cursor to home position

'@ MOVABS - moves cursor in absolute screen coordinates

e MOVEA - moves cursor in absolute user coordinates
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2.2.

2.3.

e MOVREL - moves cursor in relative screen coordinates

o NEWPAG - clears terminal screen

o SWINDO - dimensions terminal in screen coordinates

o TSEND - dumps contents of graphics buffer to terminal

e VWINDO - dimensions terminal in user coordinates

FORTRAN Subroutines

® ASSIGN - opens an auxiliary file for input or output

® CLOSE - closes an auxiliary file being used for data I/0
PROGRAM Subroutines

o AXAREA - calculates axial area of a gear

o BASNEW - computes involute base radijus

o CHANG1 - allows change of forming parameters

o CHANGE - allows modification of input geometry

e COORDS - manages profile determining equations

o DEFLEC - manages die deflection equations

e DEGRAD - converts angle measure between degrees and radians
e DRCIRC - draws a portion of a circle

e DRGEAR - draws an entire gear

o DRWING - manages drawing of gear profile and whole gear

e DSPLAY - displays original and corrected tooth geometries
e DTOOTH - draws a single gear tooth

e ECHOIN - re-prints (echos) gear input geometry

e EDM - creates output files for electrical discharge

machining (EDM)
® ELASTC - computes elastic deflections in die due to forming

loads




EQUTNS - contains all gear profile equations

ERROR - computes error associated with a new cutter
EXTRUS - computes maximum radial extrusion pressure
FILE - geometry I/0 using an external file

FILLET - enables alterering of gear tooth fillet

FLWSTR - returns flow stress of a given material

FRGING - computes maximum radial forging pressure
FRMING - manages stress computation routines

FUNINV - computes involute function of a given angle
GEARDI - main program which calls all other subroutines
GENTRO - generates candidate trochoid cutting points
GIVEN]l - reads user supplied hob geometry data

GIVENZ - reads user supplied shaper cutter geometry data
GIVENS - manages GIVEN1 and GIVENZ

HEATDF - computes die deflections due to temperature

ODCHEC - checks for compatible gear 0.D. and tooth
thickness

QUTFIL - writes an analysis output file

OQUTVBL - outputs a variable to terminal

PAGFRM - cledrs terminal; draws and numbers a new page
PARAMS - computes extra gear parameters

PERMTR - computes perimeter of a gear

PINDIM - computes over pins dimensions of a gear
QUESTN - presents a question to terminal

READ1

reads in user specified forming parameters
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READIN
RESETC
ROTATE

SCALES
SHRFIT
STATES
SYSCHG
TIP

TROCHO
UNDERC
VBLIPT

manages input of gear geometry
resets gear geometry for a new cutting tool

rotates a pair of coordinates through a given
angle : ‘

computes size of scale line for a given drawing
computes die deflections due to shrink fitting

presents a statement to terminal

normalizes gear geometry

computes gear tip tooth thickness

determines cutting point of a protuberance hob

checks for an undercut condition in gear fillet

reads a variable
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ANALYSIS OF METAL FLOW USING
LEAD AS A MODEL MATERIAL
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1.0. INTRODUCTION

Forging and extrusion are two of the more important processes that
can be used for manufacturing spur and helical gears. In both
cases, the production rates can vary between 10 and 20 parts per
minute in an automated system. The load-stroke curves for such
processes do not generally give any detailed information on how
the material flows during the forming operation. Information which
may be useful to the die designer includes;

e at what load does the material begin to flow;

e where does the material first begin to flow;

e in which direction does the material move;

e in what order are the various areas of the part fj]]ed; and
e which areas of the part are the most difficult to fill?

To answer these and similar questions requires knowledge of the
relationships between material properties, friction conditions,
and process mechanics. However, the extent of such knowledge at
the present time makes an exact theoretical analysis of practical
forming operations difficult (1)*. A powerful tool in forming
process development is the use of highly deformable model
materials to simulate real forming operations. This appendix deals
_with the simulation of the material flow in a spur gear forging
die. The study was divided into three tasks. Task I involved a
series of ring tests to determine the best lubricant to use. The
second task studied the radial flow in thin (length (height)/
diameter = 0.2) billets. Finally, in Task III the material flow in
a full-scale production gear forging was investigated.

2.0. MODEL MATERIAL AND TOOLING

2.1. Model Materials

Wax, plasticene, lead and clay compositions have been used to
obtain qualitative information about metal flow (1). No model
material is known today which has non-elastic deformation behavior
exactly like the material of the real process. Most materials have
a temperature and rate zone in which the deformation resistance is

*Numbers in parentheses refer to references at the end of the
appendix.
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practically independent of the degree of deformation. This is the
case with steel during hot working and with sodium and lead at
room temperature when the deformation rate is sufficiently Tow

(2).
2.1.1. Preliminary Investigation.

2.1.1.1. Plasticene. During a preliminary investigation,
plasticene was used as a model material in a spur gear forging die
using various lubricants. The plasticene was difficult to remove
from the die without tearing and left a tedious cleanup job before
a new sample could be deformed. This was the case no matter which
lubricant was used (Note: the various lubricants used are
discussed in the next section).

2.1.1.2. Lead. Lead billets were also used in the preliminary
investigation. The deformation loads were higher and the deformed
material required a higher push-out load as compared to the
plasticene. However, there was virtually no die pickup and the
formed part did not undergo any noticeable additional deformation
during removal from the die. For these reasons it was decided to
use lead as the model material.

2.1.2. Lead Processing. Prior to cutting the various lead

spec imens to size, the lead was processed to obtain a fine grain
size with as little directionality as possible in the final
product. A split mold for casting the lead (99.9 percent pure) was
made from stainless steel pipe (0.25 in. wall thickness x 6 in.
0.D. x 11 1in. long) by sawing the pipe in half, longitudinally.
Cast lead billets were made by first pouring about 20 pounds of
lead into the mold, then continuously adding molten lead to this
material by melting ingots over the mold with an oxygen-acetylene
torch until a billet of approximately six in. in length had been
cast.

This 5-1/2 in. diameter billet was then hammer forged to an
outside diameter of about 3-1/4 in. The ends were trimmed and the
diameter machined to 3 in. to remove surface defects and laps.
Finally, this machined billet was extruded through a 2-1/8 in.
diameter die. About 75 tons were required to initiate extrusion,
after which the load decreased. A 700-ton hydraulic press was used
for this work. A sketch of the extrusion tooling is shown in
Figure G-1.

2.2. Tooling

The tooling used for the modeling studies is shown in Figures G-2
and G-3. The container, or die, consisted of a cylindrical piece
of tool steel with the shape of a spur gear cut entirely tarough
the center. The punch, also made of tool steel, was shaped to fit
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“FLGURE G-1.
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Extrusion Setup Used for Preparing Lead Specimens
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FIGURE G-2. Top and Section View of Die Used for Spur Gear
Modeling Studies
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FIGURE G-3. Top and Side View of Punch and Counter Punch Used
for Spur Gear Modeling Studies
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inside the die with a minimum amount of clearance to allow for
free axial movement. The final piece of tooling was a counter
punch which had the same configuration as the punch except there
was no projection on the counter punch.

3.0. LUBRICATION TESTS

The objective of lubrication tests was to determine the most
suitable lubricant for later use in the modeling of radial flow.
In the radial flow trials, it was desired to have as little
friction as possible on the punch and insert so that a plain
strain condition could be assumed, thus allowing better

correlation with the finite element results discussed in Appendix
C.

3.1. Ring Geometry

The lubrication trials were done using lead ring specimens and by
conducting a simple upsetting in a Baldwin Universal Testing
Machine. The rings had an overall 0.0.:1.D.:Height ratio of ©:3:2.
Four Tubricants were investigated with a 25 percent and a 50

percent reduction being done for each. The Tlubricants studied were
as follows;

(1) Lead oxide (Pb)

, J. T. Baker Chemical Co.) & Mobil heavy duty
10W motor o0il (PbO:0il =

1= 1:1.25)
(2) K-Y Lubricating Jelly, Johnson & Johnson,
(3) Johnson's Baby Powder (talc), Johnson & Johnson, and

(4) Dgf 123 Dry Graphite Film Lubricant, Miracle Power Products
Corp.

3.2. Ring Tests

Several specimens were tested, some using no lubricant as a
control. Table G-1 summarizes the ring test results. the
effectiveness of each lubricant was determined by plotting tne
percent decrease in the inside diameter of each ring against the
percent reduction in height. This is shown in Figure G-4. From
this graph, the best lubricant was selected to be the lead oxide-
motor 0il combination (Pb0O) which had an m value (friction shear
factor) of 0.2. This was the lubricant used in the radial flow
trials and the production scale simulation.

4.0. RADIAL FLOW TESTS

Appendix C discusses the simulation conducted using a two-
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dimensional finite element method (FEM) program called ALPID (3)
which predicted the ratio of the radial pressure to flow stress
required to fill the corners of the gear teeth. In an effort to
both correlate and validate the results of this FEM analysis, a
series of radial forgings were done with lead as the model
material. These forgings were made using thin sections of lead
(0.D.:Height = 3) in a spur gear die and a flat punch.

4.1. Tool Setup

The tool setup for these tests is shown in Figure G-5. Based on
experience, the finish on surface 'A' was estimated to be 8 micro-
inches and the finish on surface 'B' was estimated at 16 micro-
inches. The lubricant used for these trials was a lead-oxide and
motor 0il mixture as determined during the Tlubrication tests
described earlier.

4.2. Test Procedure

The Tubricant, when used, was only applied to surfaces 'A' and
'B'. By coating these surfaces, it was assumed that the flow would
be purely radial and so permitted the use of a two-dimensional FEM
simulation.

Prior to each trial, metal particles were removed from the tooling
and then both the tooling and the new billet were cleaned with
acetone dampened tissues. Whenever the PbO + o0il lubricant was
used, it was applied with a paint brush to surfaces 'A' and 'B'
(see Figure G-5). After cleaning the tools and workpiece and, when
appropriate, applying the lubricant, the assembly (Figure G-5) was
placed on a Baldwin Universal Testing Machine. A cross-head speed
of 0.3 inch per minute was used and a load vs. stroke curve was
obtained while deforming the billet. A typical load-stroke curve
is shown .in Figure G-6. The first billet was deformed until the
load increased at a rate which suggested that the die was
completely filled. Subsequent tests were then run by loading to a
specific point on the first load-stroke curve. These points were
picked based both upon experience and the inflection points
observed on the first load-stroke curve.

4.3. Results

The results of the radial flow tests are tabulated in Table G-2.
Several photographs were taken of each specimen from several
different angles. These photographs are shown in Figures G-7
through G-12. Specimens 101 through 109 were formed using the
selected lubricant, yet the photographs show a noticeable amount
of friction was still present between the part and the counter
punch and between the part and the bottom plate. However, this
friction was much less than when no Tubricant was used (specimens
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G-16

12

Side View of Radial Flow Trial Specimen Numbers 110

Through 117 (no lubricant)

FIGURE G-8.




FIGURE G-9.

Isometric View of Radial Flow Trial Specimen Numbers
-101 Through 109 (PbO + o0il1 lubricant; specimen No.
103 not shown)
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FIGURE G-10. Isometric View of Radial Flow Trial Specimen Numbers
110 Through 117 (no lubricant)
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FIGURE G-11. Bottom View of Radial Flow Trial Specimen Numbers
101 Through 109 (PbO + 0il1 lubricant; specimen No.
103 not shown)
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FIGURE G-12. Bottom View of Radial Flow Trial Specimen Numbers
110 Through 117 (no lubricant)
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110 through 117). The most difficult areas to fill on the forging
were the corners of the gear teeth at the tip of each tooth. These
should be the most difficult areas to force the material into.

4.4, Comparison with FEM Results

As stated in Appendix C, the ratio of radial pressure to flow
stress which is required for maximum die filling is 5.0 as
predicted by the FEM program ALPID. In order to compute this ratio
for the lead modeling trials, the flow stress of the lead had to
be determined. Using a program called RINGFS, (4) each Tload-stroke
curve from the lubrication tests was digitized and the data was
manipulated to compute the flow stress curve for each ring used in
the lubrication tests. All of these curves were similar, one of
which is shown in Figure G-13. This curve indicates that the
average flow stress and the maximum flow stress are both
approximately equal to 2500 psi. Using this value for the maximum
flow stress, the corresponding ratio of radial pressure to flow
stress can be computed.

Assuming a hydrostatic state of stress, the radial pressure was
determined by dividing the peak load by the area of the gear as
determined in a gear die design program called GEARDI (GEAR DIe
design). Table G-3 summarizes this data. Specimen numbers 101,
107, and 109 most nearly represent the load at which the die was
just filled (number 102 exhibited compacted lubricant in the
corners which suggested the presence of a higher load than
necessary to produce complete filling). The average value for the
radial pressure to flow stress ratio (p/G ) for these three
specimens was approximately equal to 5.38 which agrees closely
with the FEM result of (p/Gd ) = 5.0.

In the GEARDI program, the user can specify the amount of corner-
filling desired for a particular die design. The program then uses
empirical formulas to compute the required punch pressure and flow
stress for a given material. These values are tabulated in Table
G-4. A comparison of the FEM and GEARDI results is plotted in
Figure G-14. Notice that the plot of the GEARDI results shows a
drop in the {(p/c ) ratio before an increase. The cause of this
decrease is not known but is most likely due to the assumptions
which were made in approximating the shape of the gear tooth
cavity with a simple geometry for which load equations were
derived. The similarity of the two curves in Figure G-14 supports
the use of the equations in the GEARDI program which allows for
much quicker evaluation of forging loads as compared to a lengthy
finite element analysis.

The close agreement between the FEM, GEARDI, and lead modeling
results suggests that to achieve complete filling of the die
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Data and the Computer Program RINGFS
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TABLE G-3. Ratio of Radial Pressure to Flow Stress for Various
Radial Flow Test Specimens

Deformation Pressure,

Trial No. P (ksi) P/o
101 11.94 4.78
102 33.79 13.52
103 16.01 6.40
104 7.00 2.80
105 | | 5.11 2.05
106 7.78 3.11
107 . 15.96 6.39
108 8.94 3.57
109 12.45 4.98

G-23




TABLE G-4. Radial pressure and flow stress values for lead at
various stages of corner tooth filling as determined
Cy the GEARDI program

Punch Pressure Average Flow Stress,

Percent Fill P (ksi) o (ksi) P/o
0 3.57 0.9938 3.58
10 3.60 0.9938 3.61
20 3.64 0.9938 3.65
30 3.70 0.9938 3.71
40 3.77 0.9938 3.78
50 3.87 0.9938 3.88
60 4.02 0.9938 4.03
70 4.27 0.9938 4.28
80 4.77 0.9938 4.78
90 6.27 0.9938 6.29
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cavity, the designer should not need a punch pressure greater than
five times the flow stress of the material. Thus, if the flow
stress of a particular material were 50 ksi, the maximum pressure

required for complete filling of the gear teeth corners would be
250 ksi.

The results of these radial forging simulations have several
assumptions preceding them and may not be representative of the
actual forging process. In order to accurately predict the punch
pressure required for forging gears, a final model study was
done using actual production tooling and production-size billets.

5.0. -PRODUCTION SCALE SIMULATION
5.1. Tool Setup

The tool setup for the simulation using production-size billets
and production-size tooling is shown in Figure G-15. In addition
to the configuration of Figure G-15, another orientation of the
tools was used for a comparison of loads and degree of die
filling. This is shown in Figure G-16. In this set of trials, lead
specimen numbers 201 through 213 were lubricated on all surfaces
using PbO and motor oil. No lubricant was applied to the die, the
punch or the counter punch.

5.2. Test Procedure

Similar to the radial flow tests, initially a billet was
completely deformed to determine the peek Toad. The load stroke
curve was then divided into load segments and lead specimens were
forged to a variety of final load values. A 200-ton Baldwin
Universal Testing Machine was used for this series of tests. In
some cases the punch was moving (Figure G-15). In other cases the
punch was stationary and the counter punch was moving (Figure
G-16). The billet dimensions, lubrication conditions, tool
orientation and forging load are summarized in Table G-5. Figure
G-17 shows a typical load vs. stroke curve for the production
scale simulations.

5.3. Analysis of Forged Specimens

After forging the 16 samples, each lead specimen was sectioned
through the center, parallel to the axis of the gear. The cut
surfaces were then machined smooth and photographs were taken
showing the section view and the partially formed gear teeth.
These photographs are shown in Figures G-18 through G-23. Only
those specimens which were formed using PbO and o0il as a lubricant
have been shown. In the partially-formed stage, each gear had a
bulge somewhere between the two ends of the billet. The position
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FIGURE G-18.

Production Scale Simulation Specimen
and 202
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FIGURE G-19. Production Scale Simulation Specimen Numbers 203
and 204
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FIGURE G-20. Production Scale Simulation Specimen Numbers 205
and 206
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FIGURE G-21. Production Scale Simulation Specimen Numbers 207
and 209
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FIGURE G-22.

Production Scale Simulation Specimen Numbers 210
and. 211
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FIGURE G-23.

Inches '

Production Scale Simulation Specimen Numbers
and 213
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of the bulge usually coinc¢ided with the location of the tip of the
punch, which was to be expected.

5.3.1. Geometry. Each partially-formed gear had a geometry
~similar to that shown in Figure G-24. The indicated dimensions in
Figure G-24 were measured and are summarized in Table G-6 along
with the ratios of several pairs of measurements. These ratios
along with the dimension 'D' and the forging load have been
plotted against the press stroke in Figure G-25 (punch moving) and
Figure G-26 (punch stationary, moving counter punch).

5.3.1.1. Curve I. Referring to Figures G-25 and G-26, Curve I
shows the change in the ratio between the final height of the
specimen, 'A', and the original height. In Figure G-25 this ratio
js virtually constant (1.0) up to the point on the curve which
corresponds to the point in the simulation when the material
completely filled the tooth cavity on a single plane (when
dimension 'B' became non-zero). This is where Curves V and VI
begin at stroke location 1 on Figure G-25. During the simulation,
as 'B' increased, 'A' began to decrease and then increased again
until the material touched the top of the punch, outside the
center projection. At this point, the material flow was no longer
backwards, but into the gear teeth. The value of 'A' decreased
again (location 2) and then increased rapidly as the die filled
comp letely.

Conversely, when the counter punch was moving and the punch was
stationary (Figure G-26), the value of 'A' continuously decreased
from the start of the process until the material filled the tooth
cavity on a single plane. Similar to Figure G-25, Figure G-26
shows how 'A' decreased and then increased as the load peaked and
the teeth filled completely.

5.3.1.2. Curve II. Curve II is a plot of the dimension 'D' vs.
‘press stroke. Both Figures G-25 and G-26 show that 'D' increased
from the start of the process up to location 2. At the point in
the simulation corresponding to location 2 in Figures G-25 and
G-26, the material contacted the top of the punch outside the
center projection, and the value of 'D' remained constant as 'A'
decreased and the teeth filled. The moving punch plot of 'D' shows
much greater variation in the rate at which 'D' changed. At the
beginning of the process, 'D' increased rapidly and then slowed
down, almost to a stop, until location 1 was reached. At location
1, the load began to increase after the material touched the 0.D.
and the dimension again began to increase rapidly to location 2
due to a lower load requirement then for filling of the tooth
cavity.

When the punch was stationary it appears that 'D' increased at a
steady rate with no inflection point when Tocation 1 was reached.
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/\ A - Overall height

\TJ B - Length of formed teeth
C - Web thickness

D - Cavity depth

FIGURE G-24.
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Geometry of Partially and Completely Formed Spur
Gears from Production Scale Simulation
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The source of this phenomenon is difficult to determine. It is
1ikely that the dimensions 'A' and 'D' were closely related and in
such a way that even though 'D' was increasing in length, material
may not really have been flowing into this region at all since 'A'
was decreasing. It could be that 'D' was increasing because the
center projection was pushing material out of the center of the
billet and into the tooth cavities, thus giving the impression
that the material was flowing from the billet into the region
where 'D' was measured.

5.3.1.3. Curve II. The variation of the ratio of 'D' to ‘'A',
shown as curve III in both Figures G-25 and G-26, was basically
the same for the moving punch and the moving counter punch,
increasing at a constant rate. This plot does not give any further
indication of where the material moved in relation to the
dimension 'D'. In Figure G-25, even though Curves I and II have
muitiple inflection points, Curve III which is based on Curves I
and II, shows no such inflection points.

5.3.1.4. Curve IV. Curve IV is also shaped the same in both
Figures G-25 and G-26. Each curve shows the length of completely
formed teeth 'B' as zero up to a certain point (location 1), and
then a sudden and rapid increase in the formed length. The curve
then levels off somewhat until location 2 in the simulation was
reached, at which point the value of 'B'/'A' again increased
rapidly with the load as the tooth cavity was completely filled.
It appears that the leveling-off point occured at the point where
Curve I increases after the initial decline. The explanation is
that at this point, the load required to change the dimension in
Curve I was lower than the load required to continue to completely
form the gear tooth in the die cavity.

Since materials tend to plastically deform in the region of

least resistance, the ratio of 'A' to the original height (Curve
I) changed for a period and the ratio of 'B'/'A' remained
unchanged. Then at location 2, the material reached the top of the
punch outside the center projection and no longer flowed at the
current load. Hence, the tooth cavities resumed filling.

5.3.1.5. Curve V. Curve V reinforces the finding in Curve IV
that the completely formed teeth were not continuously developed
from beginning to end but rather leveled off for a while before
starting to fill again. The trend of Curve V in Figure G-26 shows
this particularly well as the value of 'B'/'D' began to drop as
the Tength of 'B' virtually remained unchanged while the value of
'D' (Curve II) continued to increase.

5.3.1.6. Curve VI. The load vs. stroke curve (Curve VI) is

basically the same in Figures G-25 and G-26. A1l of the
information gathered does not seem to suggest which configuration
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of the tooling was most advantageous for forming of the gear.
There were noticeable differences in the way the gear was formed
in each arrangement, but there was no indication as to the
efficiency of either process of the physical property differences,
if any, of the gears forged in either tool setup.

6.0. CONCLUSION

The three-phase modeling study summarized in this appendix has
been a useful tool in understanding the principles of forging spur
gears. The results support the use of the assumptions utilized in
the GEARDI computer program and also agree closely with the FEM
analysis described in Appendix C. The full-scale modeling trials
have revealed several facts concerning the way in which the
material flows to fill the die cavity and the gear teeth. However,
the usefulness of this information seems to be limited at this
time. In order to take full advantage of the full-scale modeling
results, more real forging trials need to be done in more detail.
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1.0. INTRODUCTION

The success of forming both spur and helical gears depends to a
great extent on the design and manufacture of the tooling. Several
forming processes can be theoretically used for forming a gear
tooth. The most important processes are rolling, forging and
extrusion. Table H-1 (1)* shows a schematic representation of
various forming processes for manufacturing gears. Some of the
tooling concepts from Table H-1 will be briefly discussed in this
appendix.

2.0. ROLLING PROCESSES

2.1. Crossrolling

For spur gears, the crossrolling (5-1 and 5-3 in Table H-1) and
the longitudinal rolling with a rotating head (6-1 in Table H-1)
processes hold much promise. The ROTO-FLO process (Figure H-1)
corresponding to 5-3 in Table H-1 and the GROB planetary rolling
process (2) (Figure H-2) corresponding to 6-1 in Table H-1 are two
commercial versions of the above processes. The ROTO-FLO process
has been highly successful in forming splines. The GROB process is
widely used in Europe for making both spur gears and splines. The
application of this method is basically confined to cold-forming
and straight tooth shapes (spur gears and splines). The GROB
process can be used to make spur gears by forming involute teeth
on long shafts and parting them to size. There have been reports
of some successful commercial applications of this process.

2.2. Polish Process

A recently-developed process in Poland (3), schematically
represented in Figure H-3, is claimed to be superior to the two
rolling methods mentioned earlier. The tooling is, however,
expensive, especially for large (greater than 3 in; 75 mm)
gears/splines. :

3.0. FORGING PROCESSES

The concept of a spur gear forging process is shown in Figure H-4
(similar to 1.2 in Table H-1). The process (for spur gears)

*Numbers in parentheses refer to references at the end of the
append ix
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FIGURE H-3.

Schematic Representation of the Oscillating Rolling
Method




BEFORE ronomeﬁxﬁ ( ~ AFTER FORGING

\\7\

i
Y

b b &

AANRVAN

-~
//’[—.T\i\

7
N

@_/" rVJ PUNCH
PUNCH EJECTOR
: W. TOP GUIDE BLOCX
‘ © vwi DIE INSERT
(8) BOTTOM GUIBE BLOCK SHRINK RING
() COUNTER PUNCH BILLET
10 BOTTOM EJECTOR FINISHED COMPONENT

. FIGURE H-4. Suggested Tool Design for Cold Forging of Spur Gears




involves inserting a billet whose outer diameter is slightly
smaller than the root of the gear into a die cavity. The material
flows radia]ly into the die cavity to form the gear. The word
"forging" is used for this process to differentiate radial
extrusion of the metal in this process from the axial extrusion
process (discussed later).

Another variation of the radial extrusion or forging process is
schematically represented in Figure H-5 (similar to 1.1 in Table
H-1) (4). The outer punch and the inner punch should be capable of
independent motions in this tooling arrangement. With the movement
of the ejector, either a triple action press or a special tooling
is required for this type of operation. The advantage of this
process is the simplified tooling; except for the die, none of the
other parts need to have the configuration of the gear teeth.

4.0. EXTRUSION PROCESSES

The process of extruding a spur or helical gear is shown
schematically in Figure H-6 (similar to 2.2 in Table H-1). The
billet has a diameter equal to the outside diameter of the gear
and is extruded through the die. A push-through operation (pushing
a billet on top of a partially extruded gear) will produce a part
with the gear teeth on the entire length. If a part with a flange
portion is required, the partially extruded gear with the flange
must be ejected. This may require;

e proper lubricant selection as the ejection is also
required, and

e a turning motion for the part in the case of helical gears
with large helix angles during ejection.

The outer diameter in the above method of extrusion does not
undergo any deformation. This may result in an undesirable
residual stress distribution. The concept of tooling shown in
Figure H-7 (4) allows the outer diameter to be deformed also.
Streamlined die concepts can be used in such designs to obtain
nearly uniform deformation.

6.0. CONCLUDING REMARKS

From the few concepts presented in this section, the processes of
forging (radial extrusion) and extrusion have not been
systematically studied and developed for spur and helical gears.
Ro1ling processes have been successfully applied especially in the
forming of spur gears and splines. However, their commercial
viability, especially for spur gears, is not yet known. If any of
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of the extrusion or forging processes detailed in this appendix
can be developed to guarantee a reasonable degree of success in

the current program, many end users in the industry will benefit
because;

e they may already have presses with adequate capacity in
their production line, and

e the technology of proper tooling and its manufacture will
be made available to them through this program and hence
their development costs will be much less than in new
investments such as rolling, for example.
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